www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Potenzreihenentwicklung
Potenzreihenentwicklung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihenentwicklung: Bestimmung des Restglieds
Status: (Frage) überfällig Status 
Datum: 16:21 Mo 03.07.2006
Autor: RalU

Aufgabe
Sei f: x-> [mm] x^{2}+cos(1-x) [/mm]
a) Entwickeln Sie f in eine Taylorreihe an der Stelle [mm] x=\pi/4 [/mm] bis zum Glied zweiter Ordnung.
b) Schätzen Sie das Restglied für [mm] x=\pi/3 [/mm] ab, d.h. [mm] R3(\pi/3). [/mm]

Teil a) hab ich folgendermaßen gelöst:

f'(x)=2x-sin(1-x)*(-1) = 2x+sin(1-x)
f''(x)=2+cos(1-x)*(-1)=2-cos(1-x)
f'''(x)=sin(1-x)*(-1)=-sin(1-x)

[mm] f(\pi/4)=\pi/4^{2}+cos(1-\pi/4)=\pi^{2}/16+cos(1-\pi/4) [/mm]
[mm] f'(\pi/4)=2*\pi/4+sin(1-\pi/4)=\pi/2+sin(1-\pi/4) [/mm]
[mm] f''(\pi/4)=2-cos(1-\pi/4) [/mm]

[mm] p(x)=(f^{0}(\pi/4)/0!)*(x-\pi/4)^{0}+(f'(\pi/4)/1!)*(x-\pi/4)^{1}+(f''(\pi/4)/2!)*(x-\pi/4)^{2}+...= [/mm]
[mm] =(\pi^{2}/16+cos(1-\pi/4)+(\pi/2+sin(1-\pi/4))*(x-\pi/4)+(2-cos(1-\pi/4)/2)*(x-\pi/4)^{2} [/mm]

Ist das soweit in Ordnung? Gibt es eine Möglichkeit, das alles in Summen-Schreibweise darzustellen, ohne einen Taschenrechner zu benutzen(vgl. Problematik sin/und cos-Werte)?

für Teil b) würde ich folgendermaßen beginnen:
Formel für Restglied:
[mm] ((f^{k+1}(\psi))/(k+1)!)*(x-entwpkt)^{k+1} [/mm]
also:
[mm] (f'''(\psi)/3!)*(x-\pi/3)^{3} [/mm]

Die Gesamtlösung für b) ist dann a) + das Restglied.
Aber wie komme ich zu meinem [mm] \psi? [/mm] Bzw. was muss man da abschätzen? Wie geht man da vor?
Vielen Dank für Eure Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Potenzreihenentwicklung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mi 05.07.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]