www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Potenzmenge
Potenzmenge < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzmenge: Menge
Status: (Frage) beantwortet Status 
Datum: 17:30 So 26.02.2012
Autor: mikexx

Aufgabe
Wie kann man für irgendeine Indexmenge $I$ eine Menge $A$ bestimmen, für die gilt:

[mm] $\mathfrak{P}(A)=\left\{A_i~|~i\in I\right\}$? [/mm]

Ich muss also eine Menge konstruieren, deren Potenzmenge aus den [mm] $A_i$ [/mm] besteht.

Wie macht man das?

        
Bezug
Potenzmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 So 26.02.2012
Autor: Gonozal_IX

Hiho,

wenn die [mm] A_i [/mm] in der Potenzmenge von A liegen sollen, so gilt ja gezwungenermaßen:

[mm] $A_i \subseteq [/mm] A$

Das kleinste A, dass dies erfüllt, wäre $A = [mm] \bigcup_{i\in I} A_i$ [/mm]

Allerdings erhälst du damit nur sicher:
[mm] $\{A_i \,|\; i\in I\} \subseteq \mathcal{P}(A) [/mm] $

Die Gleichheit gilt im Allgemeinen nicht.

MFG,
Gono.


Bezug
                
Bezug
Potenzmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:39 So 26.02.2012
Autor: mikexx

Dankeschön!

Was ist, wenn [mm] $I=\emptyset$? [/mm]

Bezug
                        
Bezug
Potenzmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 17:44 So 26.02.2012
Autor: Gonozal_IX

Hiho,

wenn $I = [mm] \emptyset$, [/mm] so ist trivialerweise $A = [mm] \emptyset$ [/mm]

Eine Menge A, so dass [mm] $\mathcal{P}(A) [/mm] = [mm] \emptyset$ [/mm] gilt, existiert nicht, da $1 [mm] \le \left|\mathcal{P}(A)\right|$ [/mm] immer gilt, da [mm] $\emptyset \in \mathcal{P}(A)$ [/mm] immer gilt.

MFG,
Gono.

Bezug
                                
Bezug
Potenzmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:48 So 26.02.2012
Autor: mikexx

Kurze Nachfrage:

Wenn [mm] $I=\emptyset$, [/mm] ist

[mm] $\left\{A_i~|~i\in\emptyset\right\}=\emptyset$, [/mm] weil es keine solche i's in der leeren Menge gibt?

Bezug
                                        
Bezug
Potenzmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 17:52 So 26.02.2012
Autor: Gonozal_IX

Hiho,

> Kurze Nachfrage:
>  
> Wenn [mm]I=\emptyset[/mm], ist
>  
> [mm]\left\{A_i~|~i\in\emptyset\right\}=\emptyset[/mm], weil es keine
> solche i's in der leeren Menge gibt?

ja, das wäre die einzig sinnvolle Auslegung.
Im Normalfall sagt man aber:

"Sei [mm] $I\not= \emptyset$ [/mm] beliebige Indexmenge....."

d.h. der Fall kann gar nicht auftreten.
Aber wenn man es unbedingt mitdefinieren möchte, nur so, wie du oben erwähnt hast.

MFG,
Gono.

Bezug
                                                
Bezug
Potenzmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:58 So 26.02.2012
Autor: mikexx

Nochmal dazu eine ähnliche Frage, weil ich mich mit der leeren Menge als Indexmenge schwer tue (was wir aber manchmal zugelassen haben).

Wenn ich mir jetzt sowas anschaue:

[mm] $\left\{x~|~\forall i\in\emptyset: x\in A_i\right\}$ [/mm] so hat man doch die Allklasse? Denn für jedes beliebige x trifft es so daß es in den [mm] $A_i$ [/mm] enthalten ist?

Ich erkläre mir das immer so: Es gibt gar keine i, für die man das zeigen müsste. Also gilt es.

Bezug
                                                        
Bezug
Potenzmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 18:13 So 26.02.2012
Autor: Marcel

Hallo,

> Nochmal dazu eine ähnliche Frage, weil ich mich mit der
> leeren Menge als Indexmenge schwer tue (was wir aber
> manchmal zugelassen haben).
>  
> Wenn ich mir jetzt sowas anschaue:
>  
> [mm]\left\{x~|~\forall i\in\emptyset: x\in A_i\right\}[/mm] so hat
> man doch die Allklasse? Denn für jedes beliebige x trifft
> es so daß es in den [mm]A_i[/mm] enthalten ist?
>  
> Ich erkläre mir das immer so: Es gibt gar keine i, für
> die man das zeigen müsste. Also gilt es.

ja. Oder Du sagst: Sei [mm] $M:=\left\{x~|~\forall i\in\emptyset: x\in A_i\right\}\,.$ [/mm] Angenommen, es gäbe ein [mm] $x\,$ [/mm] mit $x [mm] \notin M\,.$ [/mm] Dann existierte auch ein [mm] $i_0 \in \emptyset$ [/mm] so, dass $x [mm] \notin A_{i_0}\,.$ [/mm] Dann wäre [mm] $\{i_0\} \subseteq \emptyset$ [/mm] und damit [mm] $|\emptyset| \ge |\{i_0\}|=1\,.$ [/mm] Widerspruch (zu [mm] $|\emptyset|=0$)! [/mm]

Aber Dein Argument ist auch das, was ich bevorzugen würde: In [mm] $\emptyset$ [/mm] gibt's keine Elemente, für die man irgendwas zu zeigen hat!

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]