www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Potenzen
Potenzen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzen: Lösungsansatz
Status: (Frage) beantwortet Status 
Datum: 18:46 Mo 06.07.2015
Autor: m8sar6l1Uu

Aufgabe
a, b [mm] \in \IR [/mm] mit b = 0

[mm] a^{b} [/mm] = 1 [mm] \gdw [/mm] (a = 1 [mm] \vee [/mm] b = 0 [mm] \not= [/mm] a)

Ich weiß nicht, wie ich dies beweisen soll.

Die Richtung: [mm] a^{b} [/mm] = 1 [mm] \Leftarrow [/mm] (a = 1 [mm] \vee [/mm] b = 0 [mm] \not= [/mm] a) ist einfach.

Aber die Gegenrichtung zu zeigen fällt mir schwer.

        
Bezug
Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:28 Mo 06.07.2015
Autor: reverend

Hallo,

> a, b [mm]\in \IR[/mm] mit b = 0
>  
> [mm]a^{b}[/mm] = 1 [mm]\gdw[/mm] (a = 1 [mm]\vee[/mm] b = 0 [mm]\not=[/mm] a)
>  Ich weiß nicht, wie ich dies beweisen soll.
>  
> Die Richtung: [mm]a^{b}[/mm] = 1 [mm]\Leftarrow[/mm] (a = 1 [mm]\vee[/mm] b = 0 [mm]\not=[/mm]
> a) ist einfach.
>  
> Aber die Gegenrichtung zu zeigen fällt mir schwer.

Darfst Du logarithmieren? ;-)

Grüße
reverend

Bezug
        
Bezug
Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:02 Mo 06.07.2015
Autor: M.Rex

Hallo
> a, b [mm]\in \IR[/mm] mit b = 0

>

> [mm]a^{b}[/mm] = 1 [mm]\gdw[/mm] (a = 1 [mm]\vee[/mm] b = 0 [mm]\not=[/mm] a)
> Ich weiß nicht, wie ich dies beweisen soll.

>

> Die Richtung: [mm]a^{b}[/mm] = 1 [mm]\Leftarrow[/mm] (a = 1 [mm]\vee[/mm] b = 0 [mm]\not=[/mm]
> a) ist einfach.

>

> Aber die Gegenrichtung zu zeigen fällt mir schwer.

mach dir das mal "in Worten" klar. [mm] a^n [/mm] bedeutet ja, dass du a eben n-mal mit sich selber multiplizieren musst. Damit dann immer noch 1 heruskommt, muss entweder die 1 mehrfach mit sich selber multipliziert werden oder eben die Zahl a eben genau 0-mal mit sich selber multipliziert werden.

Marius

Bezug
                
Bezug
Potenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:23 Di 07.07.2015
Autor: tobit09

Hallo Marius!


> mach dir das mal "in Worten" klar. [mm]a^n[/mm] bedeutet ja, dass du
> a eben n-mal mit sich selber multiplizieren musst.

In der (von mir vermuteten korrigierten) Aufgabenstellung muss aber $b$ gar keine natürliche Zahl n sein.


> Damit
> dann immer noch 1 heruskommt, muss entweder die 1 mehrfach
> mit sich selber multipliziert werden oder eben die Zahl a
> eben genau 0-mal mit sich selber multipliziert werden.

Betrachte mal $a=-1$ und $n=2$... ;-)
(Falls, wie von mir vermutet, $a>0$ vorausgesetzt sein soll, spielt dieser Fall natürlich für die Aufgabenstellung keine Rolle.)


Viele Grüße
Tobias

Bezug
        
Bezug
Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 03:13 Di 07.07.2015
Autor: tobit09

Hallo m8sar6l1Uu!


> a, b [mm]\in \IR[/mm] mit b = 0
>  
> [mm]a^{b}[/mm] = 1 [mm]\gdw[/mm] (a = 1 [mm]\vee[/mm] b = 0 [mm]\not=[/mm] a)

Bitte überprüfe die Aufgabenstellung:
Soll wirklich b die reelle Zahl 0 sein, wie es die Formulierung [mm] "$a,b\in\IR$ [/mm] mit $b=0$" ausdrückt?

Falls ja: Dann ist die linke Seite stets erfüllt (wenn ihr [mm] $a^0:=1$ [/mm] für alle [mm] $a\in\IR$ [/mm] definiert habt), während die rechte Seite für $a=0$ nicht erfüllt ist.
Die Behauptung ist also falsch.

Falls nein: Dann ist [mm] $a^b$ [/mm] zumindest für $a<0$ und [mm] $b\notin\IN_0$ [/mm] üblicherweise gar nicht definiert.
Auf der linken Seite von [mm] $\gdw$ [/mm] steht somit im Allgemeinen gar keine sinnvolle Aussage.


Ich erlaube mir daher mal, bis zur Klärung der Aufgabenstellung von [mm] "$a,b\in\IR$ [/mm] mit $a>0$" anstelle von [mm] "$a,b\in\IR$ [/mm] mit $b=0$" auszugehen.


> Die Richtung: [mm]a^{b}[/mm] = 1 [mm]\Leftarrow[/mm] (a = 1 [mm]\vee[/mm] b = 0 [mm]\not=[/mm]
> a) ist einfach.
>  
> Aber die Gegenrichtung zu zeigen fällt mir schwer.

Was weißt du über die (strenge) Monotonie der Abbildungen

       [mm] $f_a\colon\IR\to\IR,\quad a\mapsto a^x$ [/mm]

für $a>0$ in Abhängigkeit von a?
(Falls ihr das noch nicht hattet, nutze eure Definition von [mm] $a^x$, [/mm] um die Monotonie zu untersuchen.)

Für diejenigen $a>0$, für die [mm] $f_a$ [/mm] streng monoton ist, ist [mm] $f_a$ [/mm] insbesondere injektiv.
(Begründe dies, falls ihr diesen Zusammenhang noch nicht kennt.)

Insbesondere folgt für diese Zahlen $a$ im Falle [mm] $a^b=1$ [/mm] aus

       [mm] $f_a(b)=a^b=1=a^0=f_a(0)$ [/mm]

dann was?


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]