Polynomringe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:44 Fr 21.01.2011 | Autor: | katrin10 |
Aufgabe | Zeigen Sie:
a) Sind R [mm] \le [/mm] S Ringe und x [mm] \in [/mm] S, so ist die Abbildung
[mm] \pi [/mm] : R[t] [mm] \to [/mm] S, [mm] f=\summe_{i=0}^{n}a_i t^{i} \mapsto \summe_{i=0}^{n}a_i x^{i} [/mm] =: f(x) ein Ringhomomorphismus.
b) Jedes Element des Ringes [mm] \IR[/mm] [t][mm] /(t^2+1) [/mm] lässt sich in der Form [mm] \overline{a_1 t+a_0} [/mm] mit [mm] a_0, a_1 \in \IR [/mm] schreiben.
c) Die Abbildung [mm] \phi: \IR[/mm] [t][mm] /(t^2+1) \to \IC, \overline{f} \mapsto [/mm] f(i), wobei i die imaginäre Einheit bezeichne, ist ein Ringisomorphismus. |
Hallo,
hier sind meine Lösungsansätze zu den Aufgaben:
zu a)
f,g [mm] \in [/mm] R[t]
Dass [mm] \pi(f g)=\pi(f)*\pi(g) [/mm] und [mm] \pi(1)=1 [/mm] gilt, habe ich gezeigt.
Um zu zeigen, dass [mm] \pi(f+g)=\pi(f)+\pi(g) [/mm] gilt, habe ich eine Fallunterscheidung gemacht, ob die Polynome f und g aus gleich vielen Summanden bestehen. Falls die Anzahl unterschiedlich ist, wird bei dem Polynom, das aus weniger Summanden besteht, eine entsprechende Anzahl von Nullen ergänzt und dann konnte ich [mm] pi(f+g)=\pi(f)+\pi(g) [/mm] zeigen. Allerdings kommt mir das etwas umständlich vor.
Muss ich auch Wohldefiniertheit der Abbildung zeigen?
zu b)
Da [mm] \overline{0}=\overline{t^2+1} [/mm] folgt [mm] \overline{t^2}=\overline{-1}.
[/mm]
Fallunterscheidung:
1. Fall: n ungerade
[mm] \overline{\summe_{i=0}^{n} a_i t^{i}}=\overline{\summe_{i=0}^{(n-1)/2} a_{2i} t^{2i}+a_{2i+1} t^{2i+1}}
[/mm]
dann habe ich [mm] t^2 [/mm] durch -1 ersetzt und schließlich [mm] \overline{t*\summe_{i=0}^{(n-1)/2} a_{2i+1} t^{2i+1}+\summe_{i=0}^{(n-1)/2} a_{2i} t^{2i}} [/mm] erhalten, was gleich [mm] \overline{a_1*t+a_0} [/mm] sein müsste, wenn man [mm] a_1 [/mm] und [mm] a_0 [/mm] entsprechend setzt.
2. Fall: n gerade
[mm] \overline{\summe_{i=0}^{n} a_i t^{i}}=\overline{\summe_{i=0}^{n/2-1} a_{2i} t^{2i}+a_{2i+1} t^{2i+1}+a_n*t^n}
[/mm]
dann bin ich wie im 1. Fall vorgegangen
Ist dieser Ansatz so richtig? Muss ich auch zeigen, dass [mm] \IR[/mm] [t][mm] /(t^2+1) [/mm] ein Ring ist? Ich würde dazu zeigen, dass [mm] (t^2+1) [/mm] ein Ideal ist, allerdings weiß ich nicht, wie ich hierbei die Abgeschlossenheit zeigen soll.
zu c)
Seien [mm] \overline{a}, \overline{b} \in \IR[/mm] [t][mm] /(t^2+1) [/mm] mit [mm] \overline{a}=\overline{b}
[/mm]
[mm] \gdw a-b=m(t^2+1)
[/mm]
[mm] \gdw a=b+m(t^2+1)
[/mm]
[mm] \gdw a(i)=(b+m(t^2+1))(i)=b(i)+m(i^2+1)=b(i)
[/mm]
[mm] \gdw [/mm] Abbildung wohldefiniert und injektiv
Surjektivität:
[mm] \IC [/mm] = {a+bi| a,b [mm] \in \IR [/mm] } [mm] =\phi(\IR[/mm] [t][mm] /(t^2+1))
[/mm]
[mm] \Rightarrow [/mm] Abbildung surjektiv
Dass die Abbildung ein Ringhomomorphismus ist, habe ich gezeigt.
Sind meine Ansätze so richtig?
Vielen Dank für die Hilfe und Mühe!
Katrin
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:18 Sa 22.01.2011 | Autor: | felixf |
Moin Katrin!
> Zeigen Sie:
> a) Sind R [mm]\le[/mm] S Ringe und x [mm]\in[/mm] S, so ist die Abbildung
> [mm]\pi[/mm] : R[t] [mm]\to[/mm] S, [mm]f=\summe_{i=0}^{n}a_i t^{i} \mapsto \summe_{i=0}^{n}a_i x^{i}[/mm] =: f(x) ein Ringhomomorphismus.
>
> b) Jedes Element des Ringes [mm]\IR[/mm] [t][mm]/(t^2+1)[/mm] lässt sich in der Form [mm]\overline{a_1 t+a_0}[/mm] mit [mm]a_0, a_1 \in \IR[/mm] schreiben.
>
> c) Die Abbildung [mm]\phi: \IR[/mm] [t][mm]/(t^2+1) \to \IC, \overline{f} \mapsto[/mm] f(i), wobei i die imaginäre Einheit bezeichne, ist ein Ringisomorphismus.
>
> hier sind meine Lösungsansätze zu den Aufgaben:
>
> zu a)
> f,g [mm]\in[/mm] R[t]
> Dass [mm]\pi(f g)=\pi(f)*\pi(g)[/mm] und [mm]\pi(1)=1[/mm] gilt, habe ich gezeigt.
> Um zu zeigen, dass [mm]\pi(f+g)=\pi(f)+\pi(g)[/mm] gilt, habe ich eine Fallunterscheidung gemacht, ob die Polynome f und g aus gleich vielen Summanden bestehen. Falls die Anzahl unterschiedlich ist, wird bei dem Polynom, das aus weniger Summanden besteht, eine entsprechende Anzahl von Nullen ergänzt und dann konnte ich [mm]pi(f+g)=\pi(f)+\pi(g)[/mm] zeigen. Allerdings kommt mir das etwas umständlich vor.
Das ist auch etwas umstaendlich. Ist $f = [mm] \sum_{i=0}^n a_i x^i$ [/mm] und $g = [mm] \sum_{i=0}^m b_i x^i$, [/mm] so kannst du $N := [mm] \max\{ n, m \}$ [/mm] setzen und [mm] $a_i [/mm] := 0$ fuer $i > n$, [mm] $b_i [/mm] := 0$ fuer $i > m$. Dann ist $f = [mm] \sum_{i=0}^N a_i x^i$ [/mm] und $g = [mm] \sum_{i=0}^N b_i x^i$. [/mm] Du kannst also ohne Einschraenkung annehmen, dass beide Summen bis zum gleichen Grad $N$ gehen.
> Muss ich auch Wohldefiniertheit der Abbildung zeigen?
Nein.
> zu b)
> Da [mm]\overline{0}=\overline{t^2+1}[/mm] folgt [mm]\overline{t^2}=\overline{-1}.[/mm]
> Fallunterscheidung:
> 1. Fall: n ungerade
> [mm]\overline{\summe_{i=0}^{n} a_i t^{i}}=\overline{\summe_{i=0}^{(n-1)/2} a_{2i} t^{2i}+a_{2i+1} t^{2i+1}}[/mm]
> dann habe ich [mm]t^2[/mm] durch -1 ersetzt und schließlich [mm]\overline{t*\summe_{i=0}^{(n-1)/2} a_{2i+1} t^{2i+1}+\summe_{i=0}^{(n-1)/2} a_{2i} t^{2i}}[/mm] erhalten, was gleich [mm]\overline{a_1*t+a_0}[/mm] sein müsste, wenn man [mm]a_1[/mm] und [mm]a_0[/mm] entsprechend setzt.
>
> 2. Fall: n gerade
> [mm]\overline{\summe_{i=0}^{n} a_i t^{i}}=\overline{\summe_{i=0}^{n/2-1} a_{2i} t^{2i}+a_{2i+1} t^{2i+1}+a_n*t^n}[/mm]
> dann bin ich wie im 1. Fall vorgegangen
>
> Ist dieser Ansatz so richtig?
Ja. Allerdings kannst du beide Faelle zugleich betrachten, indem du wieder $n$ anpasst (vergroessern darfst du ja) und zwar so, dass es gerade ist.
> Muss ich auch zeigen, dass [mm]\IR[/mm] [t][mm]/(t^2+1)[/mm] ein Ring ist? Ich würde dazu zeigen, dass [mm](t^2+1)[/mm] ein Ideal ist, allerdings weiß ich nicht, wie ich hierbei die Abgeschlossenheit zeigen soll.
Nun, [mm] $(t^2 [/mm] + 1)$ ist doch per Definition das von [mm] $t^2 [/mm] + 1$ erzeugte Hauptideal, also insbesondere ein Ideal. Du musst hier also nichts zeigen.
> zu c)
> Seien [mm]\overline{a}, \overline{b} \in \IR[/mm] [t][mm]/(t^2+1)[/mm] mit [mm]\overline{a}=\overline{b}[/mm]
> [mm]\gdw a-b=m(t^2+1)[/mm]
> [mm]\gdw a=b+m(t^2+1)[/mm]
> [mm]\gdw a(i)=(b+m(t^2+1))(i)=b(i)+m(i^2+1)=b(i)[/mm]
Einsetzen gibt dir [mm] $\Rightarrow$, [/mm] aber wie kommst du auf [mm] $\Leftarrow$?
[/mm]
> [mm]\gdw[/mm] Abbildung wohldefiniert und injektiv
>
> Surjektivität:
> [mm]\IC[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
= {a+bi| a,b [mm]\in \IR[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
} [mm]=\phi(\IR[/mm] [t][mm]/(t^2+1))[/mm]
> [mm]\Rightarrow[/mm] Abbildung surjektiv
Gib doch einfach fuer konkretes $a + b i [mm] \in \IC$ [/mm] mit $a, b [mm] \in \IR$ [/mm] ein Element aus [mm] $\IR[/mm] [t][mm] /(t^2 [/mm] + 1)$ an, welches auf $a + b i$ abgebildet wird.
> Dass die Abbildung ein Ringhomomorphismus ist, habe ich gezeigt.
>
> Sind meine Ansätze so richtig?
Ja, allerdings kannst du es dir einfacher machen.
Betrachte den Ringhomomorphismus [mm] $\phi [/mm] : [mm] \IR[x] \to \IC$ [/mm] mit [mm] $\phi(x) [/mm] = i$, oder anders gesagt mit [mm] $\phi(f) [/mm] = f(i)$. Dass dies einer ist weisst du von a).
Dieser ist surjektiv (einfach zu $a + i b [mm] \in \IC$ [/mm] mit $a, b [mm] \in \IR$ [/mm] ein Urbild in [mm] $\IR[x]$ [/mm] angeben).
Also gilt nach dem Homomorphiesatz: [mm] $\IR[x] [/mm] / [mm] \ker \phi \cong \IC$ [/mm] vermoege der Abbildung [mm] $\overline{f} \mapsto \phi(f) [/mm] = f(i)$.
Es reicht also zu zeigen, dass [mm] $\ker \phi [/mm] = [mm] (x^2 [/mm] + 1)$ ist. Dass [mm] $x^2 [/mm] + 1 [mm] \in \ker \phi$ [/mm] ist folgt aus [mm] $\phi(x^2 [/mm] + 1) = [mm] i^2 [/mm] + 1 = 0$.
Sei jetzt $f [mm] \in \ker \phi$. [/mm] Du musst zeigen, dass $f$ durch [mm] $x^2 [/mm] + 1$ teilbar ist. Dazu kannst du wie in b) vorgehen. Nimm an, dass $f = [mm] \sum_{i=0}^{2 n} a_i x^i$ [/mm] ist. Dann ist [mm] $\phi(f) [/mm] = [mm] \sum_{j=0}^n (-1)^j a_{2 j} [/mm] + i [mm] \sum_{j=0}^n (-1)^j a_{2 j + 1}$. [/mm] Da dies gleich 0 ist, ist also [mm] $\sum_{j=0}^n (-1)^j a_{2 j} [/mm] = 0 = [mm] \sum_{j=0}^n (-1)^j a_{2 j + 1}$.
[/mm]
Jetzt benutze das um zu zeigen, dass du $f = [mm] (x^2 [/mm] + 1) [mm] \cdot \sum_{j=0}^{2 n - 2} b_j x^j$ [/mm] schreiben kannst mit [mm] $b_j \in \IR$.
[/mm]
(Es geht auch einfacher: dank Division mit Rest kannst du schreiben $f = q [mm] \cdot (x^2 [/mm] + 1) + r$ mit $q, r [mm] \in \IR[x]$ [/mm] und [mm] $\deg [/mm] r < 2$, also $r = a + b x$. Dann ist $0 = [mm] \phi(f) [/mm] = q(i) [mm] \cdot [/mm] 0 + r(i) = a + b i$. Also...?)
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:16 Sa 22.01.2011 | Autor: | katrin10 |
Hallo,
vielen Dank für die ausführliche Rückmeldung.
zu c:
0 = [mm] \phi(f) [/mm] = q(i) [mm] \cdot [/mm] 0 + r(i) = a + b i mit a, b [mm] \in \IR
[/mm]
[mm] \Rightarrow [/mm] a=0, b=0 und damit r=0
[mm] \Rightarrow [/mm] f=q [mm] (x^2+1)
[/mm]
[mm] \Rightarrow [/mm] f [mm] \in (x^2+1)
[/mm]
[mm] \Rightarrow [/mm] Ker(f)= [mm] (x^2+1)
[/mm]
Ist das so richtig?
LG Katrin
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:51 So 23.01.2011 | Autor: | felixf |
Moin Katrin,
> vielen Dank für die ausführliche Rückmeldung.
>
> zu c:
> 0 = [mm]\phi(f)[/mm] = q(i) [mm]\cdot[/mm] 0 + r(i) = a + b i mit a, b [mm]\in \IR[/mm]
>
> [mm]\Rightarrow[/mm] a=0, b=0 und damit r=0
> [mm]\Rightarrow[/mm] f=q [mm](x^2+1)[/mm]
> [mm]\Rightarrow[/mm] f [mm]\in (x^2+1)[/mm]
> [mm]\Rightarrow[/mm] Ker(f)= [mm](x^2+1)[/mm]
>
> Ist das so richtig?
ja, ist es.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:07 So 23.01.2011 | Autor: | katrin10 |
Vielen Dank für die Hilfe.
|
|
|
|