Polynomdivision im Körper C < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:01 Sa 28.04.2007 | Autor: | pooman |
Aufgabe | Bestimmen sie q(x) = f(x) div g(x) und r(x)= f(x) mod g(x)
für [mm] K=\IC, i=\wurzel{-1}, [/mm] mit Polynomdivision
und
f(x)= [mm] x^2+(1-i)x+(2-i)
[/mm]
g(x)=(1+i)x+(1+2i) |
Hallo und Willkommen bei meinem ersten post hier.
Bitte nicht sauer sein wenn ich irgendwas falsch mache ... habe aber zu diesem Thema nichts finden können.
Mit "Normaler" Polynomdivision in [mm] \IQ [/mm] oder [mm] \IZ_{x} [/mm] habe ich keine Probleme, nur hier steh ich irgendwie total auf dem Schlauch.
Muss ich hier im ersten Schritt den Quotient von [mm] x^2 [/mm] und (1+i)x mit den Regeln der Division für Komplexe Zahlen (also durch erweitern mit der konjugiert Komplexen Zahl) berechnen, so das [mm] \bruch{1-i}{2} [/mm] x herauskommt ?
Wäre froh wenn mir jemand wietere Hinweise geben könnte, am besten eine Lösung.Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
Danke schonmal
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:17 Sa 28.04.2007 | Autor: | Hund |
Hallo,
die komplexe Polynomdivision geht genau so wie die reelle. Bei der Division durch koplexe Zahlen musst du natürlich mit dem konjugiert komplexen erweitern.
Ich hoffe, es hat dir geholfen.
Gruß
Hund
|
|
|
|