www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Polynomdivision
Polynomdivision < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynomdivision: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:32 Do 13.01.2011
Autor: Domee

Aufgabe
Berechnen Sie die Schnittpunkte mit der x und y Achse
[mm] x^3-2x^2-x+2 [/mm]

Hallo ihr Lieben,

bin jetzt wie folgt vorgegangen und würde mich freuen, wenn jemand mal einen Blick über meine Rechnung werfen kann.

Für den y-Wert setze ich die 0 in die Ausgangsfunktion und erhalte 2.

Für den x-Wert wende ich die Polynomdivision wie folgt an:

[mm] x^3-2x^2-x+2: [/mm] (x-2) = [mm] x^2-1 [/mm]
[mm] -(x^3-2x^2) [/mm]
___________
0   0   -x+2
        -(-x+2)
____________
           0     0

Dann wende ich die P-Q-Formel wie folt an.

[mm] x^2-1 [/mm] = 0
x2,3= 0 +- 1
x2 = 1
x3= -1

Die Schnittpunkte mit der x Achse lauten:

x1 (2/0)
x2 (1/0)
x3 (-1/0)

        
Bezug
Polynomdivision: Antwort
Status: (Antwort) fertig Status 
Datum: 14:38 Do 13.01.2011
Autor: Steffi21

Hallo, alle Ergebnisse korrek, was du mit "x2,3= 0 +- 1" ist nicht nachvollziehbar, Steffi

Bezug
                
Bezug
Polynomdivision: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:44 Do 13.01.2011
Autor: Domee

Das soll die P-Q-Formel sein.
Habe das Ergebnis für die Wurzel schon ausgerechnet gehabt.

Gruß

Domee

Bezug
                        
Bezug
Polynomdivision: Antwort
Status: (Antwort) fertig Status 
Datum: 14:47 Do 13.01.2011
Autor: reverend

Hallo domee,

das ist nicht schick notiert, aber ansonsten richtig.

Hübscher: [mm] x_{2/3}=0\pm{1} [/mm]

Grüße
reverend


Bezug
        
Bezug
Polynomdivision: Anmerkung
Status: (Antwort) fertig Status 
Datum: 15:07 Do 13.01.2011
Autor: Roadrunner

Hallo Domee!


> Dann wende ich die P-Q-Formel wie folt an.
>  
> [mm]x^2-1[/mm] = 0

Das sollte ohne p/q-Formel aber schneller (und weniger fehleranfällig) gehen:

[mm]0 \ = \ x^2-1 \ = \ (x+1)*(x-1)[/mm]

[mm]\Rightarrow \ \ x+1 \ = \ 0 \ \ \ \text{ oder } \ \ \ x-1 \ = \ 0[/mm]


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]