Picard-Iteration < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:02 Sa 30.10.2010 | Autor: | Mija |
Aufgabe | Sei $F: [mm] \IR^3 \to \IR^3$ [/mm] das durch [mm] $F(y_1,y_2,y_3) [/mm] := [mm] (y_{2}y_{3},-y_{1}y_{3},2)$ [/mm] definierte (zeitunabhängige) Vektorfeld. Wir betrachten das Anfangswertproblem [mm] $\dot \varphi(t) [/mm] = [mm] F(\varphi(t)), \varphi(0)=y_0 [/mm] := (0,1,0)$
a)Berechnen Sie ausgehend von [mm] \varphi_{0}(t) :\equiv y_0$ [/mm] die Glieder [mm] $\varphi_1, \varphi_2, \varphi_3, \varphi_4$ [/mm] der Picard-Lindelöf-Iteration.
b) Wie lautet die Lösung des Anfangswertproblems? |
a) Mit [mm] $\varphi_0(t) :\equiv y_0 [/mm] := (0,1,0)$ ist
[mm] $\varphi_1(t) [/mm] = [mm] y_0 [/mm] + [mm] \integral_{t_0}^{t}{F(s,\varphi_0(s)) ds} [/mm] = (0,1,0) + [mm] \integral_{0}^{t}{F(\varphi_0(s)) ds} [/mm] = (0,1,0) + [mm] \integral_{0}^{t}{F(y_0) ds} [/mm] = (0,1,0) + [mm] \integral_{0}^{t}{F(0,1,0) ds} [/mm] = (0,1,0) + [mm] \integral_{0}^{t}{(1*0,-0*0,2) ds} [/mm] = (0,1,0) + [mm] \integral_{0}^{t}{(0,0,2) ds}$
[/mm]
$= (0,1,0) + (0,0,2t) = (0,1,2t)$
[mm] $\varphi_2(t) [/mm] = [mm] y_0 [/mm] + [mm] \integral_{t_0}^{t}{F(s,\varphi_0(s)) ds} [/mm] = (0,1,0) + [mm] \integral_{0}^{t}{F(\varphi_1(s)) ds} [/mm] = (0,1,0) + [mm] \integral_{0}^{t}{F(0,1,2t) ds} [/mm] = (0,1,0) + [mm] \integral_{0}^{t}{(1*2s,-0*2s,2) ds} [/mm] = (0,1,0) + [mm] \integral_{0}^{t}{(2s,0,2) ds} [/mm] = (0,1,0) + [mm] (t^2,0,2t)$
[/mm]
$= [mm] (t^2,1,2t)$
[/mm]
[mm] $\varphi_3(t) [/mm] = [mm] y_0 [/mm] + [mm] \integral_{t_0}^{t}{F(s,\varphi_0(s)) ds} [/mm] = (0,1,0) + [mm] \integral_{0}^{t}{F(\varphi_2(s)) ds} [/mm] = (0,1,0) + [mm] \integral_{0}^{t}{F(s^2,1,2s) ds} [/mm] = (0,1,0) + [mm] \integral_{0}^{t}{(1*2s,-s^{2}*2s,2) ds} [/mm] = (0,1,0) + [mm] \integral_{0}^{t}{(2s,-2s^3,2) ds} [/mm] = (0,1,0) + [mm] (t^2,-\bruch{1}{2}t^4,2t)$
[/mm]
$= [mm] (t^2,1-\bruch{1}{2}t^4,2t)$
[/mm]
[mm] $\varphi_4(t) [/mm] = [mm] y_0 [/mm] + [mm] \integral_{t_0}^{t}{F(s,\varphi_0(s)) ds} [/mm] = (0,1,0) + [mm] \integral_{0}^{t}{F(\varphi_3(s)) ds} [/mm] = (0,1,0) + [mm] \integral_{0}^{t}{F((s^2,1-\bruch{1}{2}s^4,2s) ds} [/mm] = (0,1,0) + [mm] \integral_{0}^{t}{(2s*(1-\bruch{1}{2}s^4),-2s^3,2) ds} [/mm] = (0,1,0) + [mm] \integral_{0}^{t}{(2s-s^5,-2s^3,2) ds}$
[/mm]
$= (0,1,0) + [mm] (t^{2}-\bruch{1}{6}t^6,-\bruch{1}{2}t^4,2t) [/mm] = [mm] (t^{2}-\bruch{1}{6}t^6,1-\bruch{1}{2}t^4,2t)$
[/mm]
Stimmt dies soweit?
Erkennt darin jemand eine bestimmte Folge?
b) Wie löse ich nun das Anfangswertproblem?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:03 Sa 30.10.2010 | Autor: | rainerS |
Hallo!
> Sei [mm]F: \IR^3 \to \IR^3[/mm] das durch [mm]F(y_1,y_2,y_3) := (y_{2}y_{3},-y_{1}y_{3},2)[/mm]
> definierte (zeitunabhängige) Vektorfeld. Wir betrachten
> das Anfangswertproblem [mm]\dot \varphi(t) = F(\varphi(t)), \varphi(0)=y_0 := (0,1,0)[/mm]
>
> a)Berechnen Sie ausgehend von [mm]\varphi_{0}(t) :\equiv y_0$[/mm]
> die Glieder [mm]$\varphi_1, \varphi_2, \varphi_3, \varphi_4$[/mm]
> der Picard-Lindelöf-Iteration.
>
> b) Wie lautet die Lösung des Anfangswertproblems?
> a) Mit [mm]\varphi_0(t) :\equiv y_0 := (0,1,0)[/mm] ist
>
> [mm]\varphi_1(t) = y_0 + \integral_{t_0}^{t}{F(s,\varphi_0(s)) ds} = (0,1,0) + \integral_{0}^{t}{F(\varphi_0(s)) ds} = (0,1,0) + \integral_{0}^{t}{F(y_0) ds} = (0,1,0) + \integral_{0}^{t}{F(0,1,0) ds} = (0,1,0) + \integral_{0}^{t}{(1*0,-0*0,2) ds} = (0,1,0) + \integral_{0}^{t}{(0,0,2) ds}[/mm]
>
> [mm]= (0,1,0) + (0,0,2t) = (0,1,2t)[/mm]
>
> [mm]\varphi_2(t) = y_0 + \integral_{t_0}^{t}{F(s,\varphi_0(s)) ds} = (0,1,0) + \integral_{0}^{t}{F(\varphi_1(s)) ds} = (0,1,0) + \integral_{0}^{t}{F(0,1,2t) ds} = (0,1,0) + \integral_{0}^{t}{(1*2s,-0*2s,2) ds} = (0,1,0) + \integral_{0}^{t}{(2s,0,2) ds} = (0,1,0) + (t^2,0,2t)[/mm]
>
> [mm]= (t^2,1,2t)[/mm]
>
> [mm]\varphi_3(t) = y_0 + \integral_{t_0}^{t}{F(s,\varphi_0(s)) ds} = (0,1,0) + \integral_{0}^{t}{F(\varphi_2(s)) ds} = (0,1,0) + \integral_{0}^{t}{F(s^2,1,2s) ds} = (0,1,0) + \integral_{0}^{t}{(1*2s,-s^{2}*2s,2) ds} = (0,1,0) + \integral_{0}^{t}{(2s,-2s^3,2) ds} = (0,1,0) + (t^2,-\bruch{1}{2}t^4,2t)[/mm]
>
> [mm]= (t^2,1-\bruch{1}{2}t^4,2t)[/mm]
>
> [mm]\varphi_4(t) = y_0 + \integral_{t_0}^{t}{F(s,\varphi_0(s)) ds} = (0,1,0) + \integral_{0}^{t}{F(\varphi_3(s)) ds} = (0,1,0) + \integral_{0}^{t}{F((s^2,1-\bruch{1}{2}s^4,2s) ds} = (0,1,0) + \integral_{0}^{t}{(2s*(1-\bruch{1}{2}s^4),-2s^3,2) ds} = (0,1,0) + \integral_{0}^{t}{(2s-s^5,-2s^3,2) ds}[/mm]
>
> [mm]= (0,1,0) + (t^{2}-\bruch{1}{6}t^6,-\bruch{1}{2}t^4,2t) = (t^{2}-\bruch{1}{6}t^6,1-\bruch{1}{2}t^4,2t)[/mm]
>
> Stimmt dies soweit?
> b) Wie löse ich nun das Anfangswertproblem?
Das Anfangswertproblem für [mm] $y_3$ [/mm] ist unabhängig von [mm] $y_1$ [/mm] und [mm] $y_2$ [/mm] und ganz einfach zu lösen. Setze diese Lösung ein und diagonalisiere.
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:26 Sa 30.10.2010 | Autor: | Mija |
Irgendwie bekomme ich es nicht hin, kann mir das jemand bitte nochmal genauer erklären?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:08 Sa 30.10.2010 | Autor: | rainerS |
Hallo!
> Irgendwie bekomme ich es nicht hin, kann mir das jemand
> bitte nochmal genauer erklären?
Bitte schreib das DGL-System hin und auf, wo du nicht weiterkommst.
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 14:32 So 31.10.2010 | Autor: | Mija |
[mm] \vektor{y_1 \\ y_2 \\ y_3} [/mm] = [mm] \pmat{ 0 & t^2 & t^2 & t^2-\bruch{1}{6}t^6 \\ 1 & 1 & 1-\bruch{1}{2}t^4 & 1-\bruch{1}{2}t^4 \\ 2t & 2t & 2t & 2t }
[/mm]
Wie mache ich nun weiter?
|
|
|
|
|
Hallo Mija,
> [mm]\vektor{y_1 \\ y_2 \\ y_3}[/mm] = [mm]\pmat{ 0 & t^2 & t^2 & t^2-\bruch{1}{6}t^6 \\ 1 & 1 & 1-\bruch{1}{2}t^4 & 1-\bruch{1}{2}t^4 \\ 2t & 2t & 2t & 2t }[/mm]
Das DGL-System lautet doch:
[mm]\pmat{y_{1}' \\ y_{2} ' \\ y_{3}' }=\pmat{y_{2}*y_{3} \\ -y_{1}*y_{3} \\ 2}[/mm]
Daraus kannst Du z.B. die Lösung für [mm]y_{3}[/mm] unter Berücksichtigung
der Anfangsbedingung berechnen.
Dann hast Du
[mm]\pmat{y_{1}' \\ y_{2} ' }=\pmat{y_{2}*y_{3} \\ -y_{1}*y_{3}}[/mm]
Anders geschrieben:
[mm]\pmat{y_{1}' \\ y_{2} ' }=y_{3}*\pmat{0 & 1 \\ -1 & 0}\pmat{y_{1} \\ y_{2}}[/mm]
Von der Matrix [mm]\pmat{0 & 1 \\ -1 & 0}[/mm] kannst Du nun
die Eigenwerte und die dazugehörigen Eigenvektoren berechnen.
Damit kannst Du dieses DGL-System vereinfachen:
[mm]\pmat{y_{1}' \\ y_{2} ' }=y_{3}*\pmat{0 & 1 \\ -1 & 0}\pmat{y_{1} \\ y_{2}}[/mm]
Mit der Transformationsmatrix T bestehend aus den Eigenvektoren,
und der Transformation
[mm]\pmat{y_{1} \\ y_{2}}=T*\pmat{u_{1} \\ u_{2}}[/mm]
ergibt sich das neue DGL-System zu:
[mm]T*\pmat{u_{1}' \\ u_{2} ' }=y_{3}*\pmat{0 & 1 \\ -1 & 0}*T*\pmat{u_{1} \\ u_{2}}[/mm]
[mm]\gdw \pmat{u_{1}' \\ u_{2} ' }=y_{3}*T^{-1}*\pmat{0 & 1 \\ -1 & 0}*T*\pmat{u_{1} \\ u_{2}}[/mm]
Dabei ist [mm]T^{-1}*\pmat{0 & 1 \\ -1 & 0}*T[/mm] eine Diagonalmatrix.
>
> Wie mache ich nun weiter?
Gruss
MathePower
|
|
|
|