www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Partielle Integration
Partielle Integration < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Integration: integralrechnung
Status: (Frage) beantwortet Status 
Datum: 18:10 Sa 07.05.2011
Autor: schnipsel

Hallo,

ich bräuchte bitte Hilfe beim Lösen folgender Aufgabe:

[mm] \integral_{-2}^{2}{ (x²+x)* e^{-3x}dx} [/mm]

das muss ich ja mit partielelr <integration rechnen.

[mm] \bruch{1}{3} x³+\bruch{1}{2}x²-\integral_{-2}^{2}{ \bruch{1}{3}x³+ \bruch{1}{2}x²* (-3x)e^{-3x} dx} [/mm]

danke

        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 Sa 07.05.2011
Autor: leduart

Hallo
sieh dir deine post vor dem Absenden mit Vorschau an, die hier war, bevor ich sie editierte nicht zu lesen.
das f(x) im formeleditor musst du durch deine Fkt. ersetzen, nicht stehen lassen.
Zur Aufgabe. [mm] e^{ax} [/mm] kannst du integrieren. die x davor stören. also müssen sie durch die part. Integration weg.
teil das Integral in 2 terme. [mm] x*e^{-3x} [/mm] und [mm] x^2*e^{-3x} [/mm]
jetzt u=x (bzw [mm] x^2) v'=e^{-3x} [/mm]  dann wird das nächste integral einfacher.
du hast aber auch bei deiner Methode [mm] e^{-3x} [/mm] falsch abgeleitet!
also von vorn!
Gruss leduart


Bezug
                
Bezug
Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:37 Sa 07.05.2011
Autor: schnipsel

[mm] \integral_{-2}^{2}{(x^{2}+x) e^{-3x}dx} [/mm]

u= x²* [mm] e^{-3x} [/mm]

u´= 2x * [mm] (-3x)e^{-3x} [/mm]

v´= [mm] e^{-3x} [/mm]

v= x* [mm] e^{-3x} [/mm]

ist das richtig?

Bezug
                        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 18:50 Sa 07.05.2011
Autor: MathePower

Hallo schnipsel,

> [mm]\integral_{-2}^{2}{(x^{2}+x) e^{-3x}dx}[/mm]
>  
> u= x²* [mm]e^{-3x}[/mm]
>  
> u´= 2x * [mm](-3x)e^{-3x}[/mm]
>  
> v´= [mm]e^{-3x}[/mm]
>  
> v= x* [mm]e^{-3x}[/mm]
>  
> ist das richtig?


Nein, das ist nicht richtig.

Das obige Integral wird zunächst in 2 Teilintegrale zerlegt:

[mm]\integral_{-2}^{2}{(x^{2}+x) e^{-3x}dx}=\integral_{-2}^{2}{x^{2}* e^{-3x}dx}+\integral_{-2}^{2}{x*e^{-3x}dx}[/mm]


Für das erste Integral ist

[mm]u= x^{2}[/mm]
  
[mm]u'= 2x[/mm]
  
[mm]v'=e^{-3x}[/mm]
  
[mm]v= -\bruch{1}{3}*e^{-3x}[/mm]


Gruss
MathePower

Bezug
                                
Bezug
Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:19 Sa 07.05.2011
Autor: schnipsel

danke.

=  x²* [mm] (-\bruch{1}{3} e^{-3x} [/mm] = [mm] \integral_{-2}^{2}{2x * \bruch{1}{3} e^{-3x}dx} [/mm]

ist das richitg so?

Bezug
                                        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 19:28 Sa 07.05.2011
Autor: MathePower

Hallo schnipsel,


> danke.
>  
> =  x²* [mm](-\bruch{1}{3} e^{-3x}[/mm] = [mm]\integral_{-2}^{2}{2x * \bruch{1}{3} e^{-3x}dx}[/mm]


So ist es richtig:

[mm]= \left( \ \left{x^{2}* (-\bruch{1}{3} e^{-3x})} \right) \ \right|_{-2}^{2} \blue{-}\integral_{-2}^{2}{2x * \bruch{1}{3} e^{-3x}dx}[/mm]


> ist das richitg so?


Gruss
MathePower

Bezug
                                                
Bezug
Partielle Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:31 Sa 07.05.2011
Autor: Steffi21

Hallo MathePower, vor das Integral gehört "+" Steffi

Bezug
                                                
Bezug
Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:53 Sa 07.05.2011
Autor: schnipsel

danke.
damit ist die aufgabe gelöst, oder?

Bezug
                                                        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 20:00 Sa 07.05.2011
Autor: MathePower

Hallo schnipsel,


> danke.
>  damit ist die aufgabe gelöst, oder?


Es ist noch das Integral

[mm]\integral_{-2}^{2}{2x \cdot{} \bruch{1}{3} e^{-3x}dx}[/mm]

zu berechnen.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]