www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Partialbruchzerlegung
Partialbruchzerlegung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:17 Mi 09.02.2005
Autor: elimin8tor

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi, ich soll zu morgen erklären können wie man  [mm] \bruch{2x^2+1}{x^3+2x^2+x} [/mm] mittels einer Partialbruchzerlegung integrieren kann.

Zuerst habe ich eine Aufteilung des Bruchs vorgenommen:

[mm] \bruch{2x}{(x-1)^2} [/mm] +  [mm] \bruch{1}{x^3 + 2x^2 + x} [/mm]

und bin dann für den ersten Teil auf

[mm] \bruch{2x}{(x-1)^2}= \bruch{A}{(x-1)} [/mm] +  [mm] \bruch{B}{(x-1)} [/mm] =  [mm] \bruch{A(x-1)+B(x-1)}{(x-1)²} [/mm]
gekommen, woraus folgt:

2x = A(x-1) + b(x-1)

das bedeutet aber letztendlich, dass  [mm] \bruch{2}{3}= [/mm] A+B

Wie komme ich jetzt weiter?

        
Bezug
Partialbruchzerlegung: Fehler + Erläuterung
Status: (Antwort) fertig Status 
Datum: 18:24 Mi 09.02.2005
Autor: Max

Hallo,

ich meine, dass deine Zerlegung falsch ist. Für den Nenner gilt ja

[mm] $x^3+2x^2+x=x\cdot\left(x^2+2x+1\right)=x (x+1)^2$ [/mm]

D.h. deine Zerlegung in

[mm] $\frac{2x^2+1}{x^3+2x^2+x}=\frac{2x}{(x\red{-}1)^2}+\frac{1}{x^3+2x^2+x}$ [/mm] ist falsch.

Du kannst aber einfach im Nenner [mm] $(x\red{+}1)^2$ [/mm] setzten um es richtig zu machen. Allerdings macht es keinen Sinn bei der Zerlegung des ersten Bruchs den gleichen Nenner zu wählen, weil dann ja gelten würde [mm] $\frac{2x}{(x+1)^2}=\frac{A+B}{x+1}$. [/mm] Einer der beiden Nenner muss [mm] $(x+1)^2$ [/mm] sein, sonst klappt es nicht!

Wenn du dann $A$ und $B$ bestimmen willst kommst du auf  zwei Gleichungen, jeweils für die Koeffizienten von [mm] $x^1=x$ [/mm] bzw. [mm] $x^0=1$. [/mm]

Gruß Brackhaus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]