www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Part. Diffbarkeit,Stetigkeit
Part. Diffbarkeit,Stetigkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Part. Diffbarkeit,Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:12 Do 13.12.2012
Autor: helicopter

Aufgabe
Sei [mm] f:\IR^2 \to \IR [/mm] definiert durch:
[mm] f(x,y)=\left\{\begin{matrix} 0, & \mbox{wenn }xy=0 \\ 1, & \mbox{sonst } \end{matrix}\right. [/mm]

Zeige dass f im Punkt (0,0) partiell differenzierbar aber nicht stetig ist.

Hallo,
ich hab dazu aufgeschrieben:
Es ist
[mm] \bruch{\partial{f}}{\partial{x}}(0,0) [/mm] =  [mm] \lim_{h \to 0}\bruch{f(0+h,0)-f(0,0)}{h} [/mm] = [mm] \lim_{h \to 0}\bruch{0-0}{h} [/mm] = 0
[mm] \bruch{\partial{f}}{\partial{y}}(0,0) [/mm] =  [mm] \lim_{h \to 0}\bruch{f(0,0+h)-f(0,0)}{h} [/mm] = [mm] \lim_{h \to 0}\bruch{0-0}{h} [/mm] = 0

Also folgt f(x,y) in (0,0) partiell diffbar.

Stetigkeit;
Betrachte Folge [mm] a_n=(\bruch{1}{n},\bruch{1}{n}), [/mm] Es ist [mm] \lim_{n \to \infty}a_n [/mm] = (0,0)
Nun ist  [mm] \lim_{n \to \infty}f(a_n) [/mm] =  [mm] \lim_{n \to \infty}f(\bruch{1}{n},\bruch{1}{n}) [/mm] =  [mm] \lim_{n \to \infty} [/mm] 1 = 1 [mm] \not= [/mm] 0 = f(0,0)
[mm] \Rightarrow [/mm] f nicht stetig in (0,0)


Ist das richtig?

Gruß helicopter

        
Bezug
Part. Diffbarkeit,Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:21 Do 13.12.2012
Autor: leduart

Hallo
richtig
vielleicht dazuschreiben f(0+h,0)=0 wegen (0+h)*0=0, aber eigentlich ist das ja klar.
Gruss leduart

Bezug
                
Bezug
Part. Diffbarkeit,Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:29 Do 13.12.2012
Autor: helicopter

OK, Danke.

Bezug
        
Bezug
Part. Diffbarkeit,Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:51 Do 13.12.2012
Autor: helicopter

Aufgabe
[mm] f(x,y)=\left\{\begin{matrix} \bruch{xy^{3}}{x^{2}+y^{2}}, & \mbox{wenn }(x,y)\not=(0,0) \\ 0, & \mbox{wenn }(x,y)=(0,0) \end{matrix}\right. [/mm]
Zeige das f in allen Punkten [mm] (x,y)\in\IR^{2} [/mm] zweimal partiell differenzierbar ist und das [mm] \bruch{\partial^{2}{f}}{\partial{x}\partial{y}}(0,0) \not= \bruch{\partial^{2}{f}}{\partial{y}\partial{x}}(0,0) [/mm] gilt.

Hallo nochmal,
stimmt es das es für den fall [mm] (x,y)\not= [/mm] (0,0) reicht, die Ableitungen auszurechnen um die partielle diffbarkeit zu zeigen? Wenn es so ist, warum?

Bezug
                
Bezug
Part. Diffbarkeit,Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:07 Do 13.12.2012
Autor: schachuzipus

Hallo,


> [mm]f(x,y)=\left\{\begin{matrix} \bruch{xy^{3}}{x^{2}+y^{2}}, & \mbox{wenn }(x,y)\not=(0,0) \\ 0, & \mbox{wenn }(x,y)=(0,0) \end{matrix}\right.[/mm]
>  
> Zeige das f in allen Punkten [mm](x,y)\in\IR^{2}[/mm] zweimal
> partiell differenzierbar ist und das
> [mm]\bruch{\partial^{2}{f}}{\partial{x}\partial{y}}(0,0) \not= \bruch{\partial^{2}{f}}{\partial{y}\partial{x}}(0,0)[/mm]
> gilt.
>  Hallo nochmal,
> stimmt es das es für den fall [mm](x,y)\not=[/mm] (0,0) reicht, die
> Ableitungen auszurechnen um die partielle diffbarkeit zu
> zeigen?

Ja!

> Wenn es so ist, warum?

Außerhalb von $(0,0)$ ist die Funktion ja als Zusammensetzung von Polynomen doch "lieb", das ist alles schön (partiell) diffbar und stetig usw.

Einzig in $(0,0)$ könnte es Stress geben, weil da der Nenner Probleme machen kann.

Gruß

schachuzipus


Bezug
                        
Bezug
Part. Diffbarkeit,Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:12 Do 13.12.2012
Autor: helicopter

Das heißt für den fall [mm] (x,y)\not=(0,0) [/mm] rechne ich mit Quotientenregel die Ableitungen aus und das genügt, und für (x,y)=(0,0) gehe ich wie bei der 1. Aufgabe vor und mache das über den Grenzwert?

Und was ist mit 2x partiell ableiten gemeint, [mm] \bruch{\partial^{2}{f}}{\partial^{2}{x}} [/mm] und  [mm] \bruch{\partial^{2}{f}}{\partial^{2}{y}} [/mm] ?

Bezug
                                
Bezug
Part. Diffbarkeit,Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 Do 13.12.2012
Autor: leduart

Hallo
1. ja
2,
Und was ist mit 2x partiell ableiten gemeint, $ [mm] \bruch{\partial^{2}{f}}{\partial^{2}{x}} [/mm] $ und  $ [mm] \bruch{\partial^{2}{f}}{\partial^{2}{y}} [/mm] $ ?
die 2 und dazu die 2 in der aufgabe, erst dann hast du alle.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]