www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Parameter bestimmen
Parameter bestimmen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameter bestimmen: Idee
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:43 Sa 03.12.2011
Autor: offthegrid

Aufgabe
Sei n=1000. Wie groß muss p gewählt werden, dass [mm] \sum_{k=0}^{100} p^k (1-p)^{n-k} \vektor{n \\ k} \geq [/mm] 0.8? Arbeiten Sie ohne tabellierte Werte.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Wie kann ich diese Frage beantworten, ohne irgendwelche tabellierten Verteilungen zur Rate zu ziehen? Die Näherung mittels Normalverteilung, scheint nicht zweckmäßig, da ich ja nach p auflösen muss und keine Stammfunktion existiert. Auch die Näherung mittels Poissonverteilung scheint wenig zweckmäßig, weil es schwer fallen dürfte, die Summe zu berechnen.

Ich wäre für Vorschläge sehr dankbar!

        
Bezug
Parameter bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:11 Sa 03.12.2011
Autor: kamaleonti

Hallo offthegrid,

    [willkommenmr]!

> Sei n=1000. Wie groß muss p gewählt werden, dass
> [mm]\sum_{k=0}^{100} p^k (1-p)^{n-k} \vektor{n \\ k} \geq[/mm] 0.8?
> Arbeiten Sie ohne tabellierte Werte.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>
> Wie kann ich diese Frage beantworten, ohne irgendwelche
> tabellierten Verteilungen zur Rate zu ziehen? Die Näherung
> mittels Normalverteilung, scheint nicht zweckmäßig, da
> ich ja nach p auflösen muss und keine Stammfunktion
> existiert. Auch die Näherung mittels Poissonverteilung
> scheint wenig zweckmäßig, weil es schwer fallen dürfte, die Summe zu berechnen.

Wenn ihr mit Näherungen arbeiten dürft, dann wäre das wohl trotzdem das Mittel der Wahl (auch wenn man p so zunächst nur näherungsweise erhält). Für große n gilt

           [mm] \binom{n}{k}p^n(1-p)^{n-k}\approx e^{-\lambda}\frac{\lambda^k}{k!} [/mm]

mit [mm] \lambda=np, k\in\{0,\ldots,n\}. [/mm] Dann folgt

(*)          [mm] \sum_{k=0}^{100} p^k (1-p)^{n-k} \vektor{n \\ k}\approx\sum_{k=0}^{100}e^{-\lambda}\frac{\lambda^k}{k!}=1-e^{-\lambda}\sum_{k=101}^{\infty}\frac{\lambda^k}{k!}=:1-e^{-\lambda}R_{100+1}, [/mm]

hier bezeichnet [mm] R_{n+1}=\sum_{k=n+1}^{\infty}\frac{\lambda^k}{k!} [/mm] das n+1. Reststück der Exponentialreihe.

Für dieses kann man die Abschätzung

          [mm] R_{n+1}\leq\frac{2\lambda^{n+1}}{(n+1)!} [/mm]

beweisen. Damit erhält man

          [mm] 1-e^{-\lambda}R_{100+1}\geq1-e^{-\lambda}\frac{2\lambda^{100+1}}{(100+1)!} [/mm]

und kann nun versuchen die Ungleichung [mm] 1-e^{-\lambda}\frac{2\lambda^{100+1}}{(100+1)!}\geq0,8 [/mm] nach p aufzulösen. Dieser Weg ist möglicherweise nicht der übliche, deswegen bleibt die Frage teilweise beantwortet.

LG



    

Bezug
                
Bezug
Parameter bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:10 So 04.12.2011
Autor: offthegrid

Vielen Dank für deine Antwort. So etwas in diese Richtung habe ich mir auch schon überlegt, dachte jedoch dass diese Restgliedabschätzungen meist doch eher unbefriedigend genau sind und das Ergebnis so schon sehr verfälscht wird. Naja ich versuche das jetzt mal damit und überprüfe mal, wie weit das dann abweicht.

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]