www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Othonormalbasis aus EV
Othonormalbasis aus EV < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Othonormalbasis aus EV: Idee
Status: (Frage) beantwortet Status 
Datum: 16:08 Di 23.01.2007
Autor: celeste16

Aufgabe
Finden Sie eine Orthonormalbasis, die aus Eigenvektoren für die angegebene Matrix besteht.

A = [mm] \pmat{ -2 & i \\ -i & -2 } [/mm]


ich hab hier "nur" die frage wie ich vorgehen muss:

- EV von A berechnen
aber dann?

ich weiß wie ich eine orthonormalbasis berechne, aber nicht wie ich diese aufgabe lösen soll

könnt ihr mir ne anleitung geben?

        
Bezug
Othonormalbasis aus EV: Antwort
Status: (Antwort) fertig Status 
Datum: 23:14 Di 23.01.2007
Autor: angela.h.b.


> Finden Sie eine Orthonormalbasis, die aus Eigenvektoren für
> die angegebene Matrix besteht.
>  
> A = [mm]\pmat{ -2 & i \\ -i & -2 }[/mm]
>  
> ich hab hier "nur" die frage wie ich vorgehen muss:
>  
> - EV von A berechnen
>  aber dann?
>  
> ich weiß wie ich eine orthonormalbasis berechne, aber nicht
> wie ich diese aufgabe lösen soll

>

Hallo,

Du hast ja schon die richtige Idee.
Eigenwerte berechnen, dann die Eigenvektoren.

Nun hast Du hier eine Matrix vorliegen, welche hermitesch ist. Das hat zur Folge, daß die Eigenvektoren zu verschiedenen Eigenwerten "automatisch" orthoGONal sind. In dem Fall verschiedenr Eigenwerte mußt Du  sie ggf. noch normieren, denn es ist ja eine OrthNORMalbasis gesucht.

Hat die Matrix zwei gleiche Eigenwerte, mußt Du hingegen Deine Eigenvektoren orthonormalisieren.

Gruß v. Angela

Bezug
                
Bezug
Othonormalbasis aus EV: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:07 Mi 24.01.2007
Autor: celeste16

ach so, danke.
habe mir das viel komplizierter gedacht

Bezug
                        
Bezug
Othonormalbasis aus EV: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:09 Do 25.01.2007
Autor: angela.h.b.

Hallo,

beachte bitte die editierte Fassung meiner Antwort.

Es spielt zwar für die aktuelle Aufgabe keine Rolle, da die Eigenwerte verschieden sind, aber Du solltest wissen, daß bei hermiteschen Matrizen die
Eigenvektoren zu verschiedenen Eigenwerten orthogonal sind.

Die Eigenvektoren zu gleichen Eigenwerten mußt Du orthogonalisieren, um eine Orthogonalbasis zu erhalten.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]