www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Orthogonale Abbildung
Orthogonale Abbildung < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonale Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:40 Mi 14.01.2009
Autor: nina1

Aufgabe
Wir betrachten den euklidischen Vektorraum [mm] \IR^2 [/mm] mit dem Standardskalarprodukt [mm] <\vec{x}, \vec{y}>:= [/mm] x1y1 + x2y2

und die Matrix-Abbildung A: [mm] \IR^2 [/mm] -> [mm] \IR^2 [/mm]  
[mm] \vektor{x1 \\ x2} [/mm] -> [mm] \vektor{a11x1 + a12x2 \\ a21x2 + a22x2} [/mm]

Sei [mm] \vec{b} [/mm] = [mm] \vektor{5 \\ -2} [/mm]

Berechnen Sie die Koeffizienten a11, a12, a21, a22 [mm] \in \IR [/mm]  sodass
1. der erste Spaltenvektor der Matrix A die Länge 1 hat und in dieselbe Richtung zeigt wie [mm] \vek{b} [/mm]
und 2. die Matrix-Abbildung A orthogonal ist.

Hallo,

meine Frage ist jetzt, wie ich den ersten Spaltenvektor so berechne, dass er in die selbe Richtung zeigt wie [mm] \vec{b}? [/mm]

Ich habe mir gedacht, dass der Betrag von [mm] \vec{b} \wurzel{29} [/mm] ist und demnach ich rechnen muss [mm] 5/\wurzel{29} [/mm] fuer die erste Koordinate und [mm] -2/\wurzel{29} [/mm] fuer die zweite?

Wenn ich den ersten Spaltenvektor habe dann brauche ich beim 2.Spaltenvektor ja nur die Koordinaten vertauschen und oben ein Minus dranmachen. oder?

Danke und Gruss Nina



        
Bezug
Orthogonale Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:50 Mi 14.01.2009
Autor: angela.h.b.


> Wir betrachten den euklidischen Vektorraum [mm]\IR^2[/mm] mit dem
> Standardskalarprodukt [mm]<\vec{x}, \vec{y}>:=[/mm] x1y1 + x2y2
>  
> und die Matrix-Abbildung A: [mm]\IR^2[/mm] -> [mm]\IR^2[/mm]  
> [mm]\vektor{x1 \\ x2}[/mm] -> [mm]\vektor{a11x1 + a12x2 \\ a21x2 + a22x2}[/mm]
>  
> Sei [mm]\vec{b}[/mm] = [mm]\vektor{5 \\ -2}[/mm]
>
> Berechnen Sie die Koeffizienten a11, a12, a21, a22 [mm]\in \IR[/mm]  
> sodass
>  1. der erste Spaltenvektor der Matrix A die Länge 1 hat
> und in dieselbe Richtung zeigt wie [mm]\vek{b}[/mm]
>  und 2. die Matrix-Abbildung A orthogonal ist.
>  Hallo,
>  
> meine Frage ist jetzt, wie ich den ersten Spaltenvektor so
> berechne, dass er in die selbe Richtung zeigt wie [mm]\vec{b}?[/mm]
>  
> Ich habe mir gedacht, dass der Betrag von [mm]\vec{b} \wurzel{29}[/mm]
> ist und demnach ich rechnen muss [mm]5/\wurzel{29}[/mm] fuer die
> erste Koordinate und [mm]-2/\wurzel{29}[/mm] fuer die zweite?
>  
> Wenn ich den ersten Spaltenvektor habe dann brauche ich
> beim 2.Spaltenvektor ja nur die Koordinaten vertauschen und
> oben ein Minus dranmachen. oder?
>  
> Danke und Gruss Nina

Hallo,

ja, so ist es.

Und wenn du mithilfe des eleditors noch Indizes setzt, sieht alles schöner aus.

Gruß v. Angela

>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]