www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Ordnungsreduktion
Ordnungsreduktion < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ordnungsreduktion: Lösung durch Sehen
Status: (Frage) beantwortet Status 
Datum: 13:40 Mi 04.03.2009
Autor: Marcel08

Aufgabe
Lineare homogene Differentialgleichung zweiter Ordnung, Ordnungsreduktion

Lösen Sie das Anfangswertproblem

[mm] (t-1)y^{||}-ty^{|}+y=0, [/mm] y(0)=1 und [mm] y^{|}(0)=\wurzel{2}. [/mm]

Hallo Matheraum,


zur Lösung dieser Aufgabe benötige ich den Produktansatz [mm] y(x)=y_{1}(x)*u(x). [/mm] In der Musterlösung steht, dass [mm] y_{1}(t)=e^{t} [/mm] ist.



Meine Frage:


Woher weiß man ohne Rechnung, dass [mm] y_{1}(t)=e^{t} [/mm] gilt?





Gruß, Marcel

        
Bezug
Ordnungsreduktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 Mi 04.03.2009
Autor: Herby

Hallo Marcel,

> Lineare homogene Differentialgleichung zweiter Ordnung,
> Ordnungsreduktion
>  
> Lösen Sie das Anfangswertproblem
>
> [mm] $(t-1)y''-ty'+y=0\quad [/mm] y(0)=1\ und\ [mm] y'(0)=\wurzel{2}$ [/mm]

Multiplizieren wir die erste Klammer einmal aus:

$ty''-y''-ty'+y=0\ $

Sortieren:

$ty''-ty'+y-y''=0\ $

Wenn also jetzt y''=y'=y wäre, dann wäre auch die Gleichung erfüllt. Eine Funktion die das leistet ist halt [mm] y=e^t [/mm]


Liebe Grüße
Herby

Bezug
                
Bezug
Ordnungsreduktion: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:29 Mi 04.03.2009
Autor: Marcel08

Hallo Herby!



Mit anderen Worten:


Wenn die Koeffizientensumme der Differentialgleichung 0 ist, so ist [mm] e^{x} [/mm] stets eine mögliche Lösung?





Gruß, Marcel

Bezug
                        
Bezug
Ordnungsreduktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:31 Mi 04.03.2009
Autor: Herby

Hallo Marcel,

ich habe bisher noch kein Gegenbeispiel gefunden, was nichts heißen mag :-)


Lg
Herby

Bezug
                                
Bezug
Ordnungsreduktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:33 Mi 04.03.2009
Autor: Marcel08

Mh, klingt aber durchaus interessant. Vielen Dank jedenfalls.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]