Offen vs abgeschlossen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:53 Sa 09.02.2013 | Autor: | Klerk91 |
Aufgabe | Eine potenzreihe konvergiert gleichmäßig auf jedem kompakten Intervall im inneren des konvergenzintervalls und ist stetig auf dem offenen konvergenzintervall. |
Ich frage mich ob das auf jedem abgeschlossenen Intervall im inneren und auf dem offenen gesamtintervall nicht zwei gleiche topologische Formulierungen sind, denn ich kann mir keinen Punkt überlegen der im offenen liegt, aber nicht auch in einem abgeschlossenen Intervall im inneren, wo ist da der Unterschied?
|
|
|
|
Hallo,
> Eine potenzreihe konvergiert gleichmäßig auf jedem
> kompakten Intervall im inneren des konvergenzintervalls und
> ist stetig auf dem offenen konvergenzintervall.
> Ich frage mich ob das auf jedem abgeschlossenen Intervall
> im inneren und auf dem offenen gesamtintervall nicht zwei
> gleiche topologische Formulierungen sind, denn ich kann mir
> keinen Punkt überlegen der im offenen liegt, aber nicht
> auch in einem abgeschlossenen Intervall im inneren, wo ist
> da der Unterschied?
"punktweise" gesehen hast du recht.
Wie du schreibst, liegt natürlich jeder Punkt im Inneren auch in einem abgeschlossenen Teilintervall.
Aber die Eigenschaft, gleichmäßig zu konvergieren, ist keine punktweise Eigenschaft. Dort ist die Angabe des gesamten Bereichs wichtig, auf dem gleichmäßige Konvergenz vorliegen soll. Deswegen bedeutet "gleichmäßige Konvergenz auf kompakten Intervall im Inneren" nicht dasselbe wie "gleichmäßige Konvergenz im Inneren".
Beispiel: Potenzreihe von [mm] $e^{x} [/mm] = [mm] \sum_{k=0}^{\infty}\frac{x^{k}}{k!}$.
[/mm]
Hat Konvergenzradius [mm] $\infty$, [/mm] d.h. die Potenzreihe konvergiert auf [mm] $\IR [/mm] = [mm] (-\infty, \infty)$ [/mm] und ist dort auch stetig.
Aber die Reihe konvergiert nicht gleichmäßig auf [mm] $\IR$ [/mm] gegen [mm] $e^{x}$. [/mm] Würde sie gleichmäßig konvergieren, gäbe es zu [mm] $\varepsilon=1$ [/mm] ein $N [mm] \in \IN$, [/mm] sodass
[mm] $\forall [/mm] x [mm] \in \IR: \quad \left|e^{x} - \sum_{k=0}^{N}\frac{x^k}{k!}\right| [/mm] < [mm] \varepsilon [/mm] = 1$
Das gilt nicht, weil die [mm] $e^{x}$-Funktion [/mm] viel schneller wächst als Polynome. Für genügend große $x$ wird also die obige Ungleichung verletzt.
Die Reihe konvergiert aber gleichmäßig auf jedem abgeschlossenen Intervall $[a,b]$: Dort kann man abschätzen:
[mm] $\forall [/mm] x [mm] \in [/mm] [a,b]: [mm] \quad \left|e^{x} - \sum_{k=0}^{N}\frac{x^k}{k!}\right| \le \sum_{k=N+1}^{\infty}\frac{|x|^{k}}{k!} \le \sum_{k=N+1}^{\infty}\frac{|\max(a,b)|^k}{k!} \to [/mm] 0$ [mm] $(N\to\infty)$
[/mm]
Viele Grüße,
Stefan
|
|
|
|