www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Navigation
 Startseite...
 Suchen
 Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Oberflächenelement,Normalvekto
Oberflächenelement,Normalvekto < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Oberflächenelement,Normalvekto: Idee
Status: (Frage) überfällig Status 
Datum: 21:28 Mi 27.11.2019
Autor: Ataaga

Aufgabe
Ein Rotationskörper ist ein Körper, dessen Oberfläche durch Rotation einer erzeugenden Kurve f(z)>0 um die Rotationsachse z gebildet wird. Eine Parametrisierung der Oberfläche kann so aussehen:

[mm] \emptyset(\alpha,z)=\vektor{f(z)cos\alpha \\ f(z)sin\alpha\\z} \alpha\in[0,2π], z\in[a,b] [/mm]

a) Bestimmen Sie den Normalenvektor!
b) Wie lautet das Oberflächenelement für den Rotationskörper aus Frage

zu a) meine Lösung: (f(z) sin φ, f(z) cos φ, [mm] f(z)f'(z))^T [/mm]

bin mir aber unsicher...

b) hier habe ich keine Lösung leider...

Bitte um Unterstützung.

Liebe Grüße

        
Bezug
Oberflächenelement,Normalvekto: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 Do 28.11.2019
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Oberflächenelement,Normalvekto: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:09 Do 28.11.2019
Autor: fred97


> Ein Rotationskörper ist ein Körper, dessen Oberfläche
> durch Rotation einer erzeugenden Kurve f(z)>0 um die
> Rotationsachse z gebildet wird. Eine Parametrisierung der
> Oberfläche kann so aussehen:
>  
> [mm]\emptyset(\alpha,z)=\vektor{f(z)cos\alpha \\ f(z)sin\alpha\\z} \alpha\in[0,2π], z\in[a,b][/mm]

Komisch ist, dass hier eine Abbildung mit [mm] \emptyset [/mm] bez. wird ...., aber bitte, wenns jemand gefällt ...

Weiter soll es wohl [mm] $\alpha\in[0,2 \pi]$ [/mm] lauten, sonst haben wir keine volle Umdrehung.


>  
> a) Bestimmen Sie den Normalenvektor!
>  b) Wie lautet das Oberflächenelement für den
> Rotationskörper aus Frage
>  zu a) meine Lösung: (f(z) sin φ, f(z) cos φ,
> [mm]f(z)f'(z))^T[/mm]
>  
> bin mir aber unsicher...

Deine Lösung ist nicht richtig. Zeig mal was und wie Du gerechnet hast. Warum schreibst Du [mm] \varphi [/mm] statt [mm] \alpha [/mm] ??

>  
> b) hier habe ich keine Lösung leider...

Wie wäre es, wenn Du nachschaust, was man unter "Oberflächenelement" versteht ?

Gruß FRED

>  
> Bitte um Unterstützung.
>  
> Liebe Grüße


Bezug
                
Bezug
Oberflächenelement,Normalvekto: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:42 Do 28.11.2019
Autor: Ataaga

Hallo,
ich habs doch hinbekommen danke.....

a) (f(z) cos φ, f(z) sin φ, -f(z)f'(z))T

und

b) |f(z)| (f'(z)²+1)^(1/2)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]