www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - ONB & Fourrierreihe in L²
ONB & Fourrierreihe in L² < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ONB & Fourrierreihe in L²: Korrektur & Tipp
Status: (Frage) überfällig Status 
Datum: 14:28 Sa 25.05.2013
Autor: Approximus

Aufgabe
Die Funktionen [mm] C_{0}, C_{n}, S_{n} \in L^{2}((-\pi,\pi),\IR),n\in\IN, [/mm] seien definiert durch [mm] C_{0}=\bruch{1}{2\pi},C_{n}=\bruch{1}{\pi}cos(nx),S_{n}=\bruch{1}{\pi}sin(nx) [/mm]

a) Zeigen Sie, dass das Funktionensystem [mm] {C_{0}, C_{n}, S_{n}:n\in\IN} [/mm] eine ONB in [mm] L^{2}((-\pi,\pi),\IR) [/mm] bildet
b) Folgern Sie, dass sich jedes [mm] f\in L^{2}((-\pi,\pi),\IR) [/mm] in [mm] L^{2}((-\pi,\pi),\IR) [/mm] darstellen lässt als reelle Fourierreihe [mm] f=\bruch{a_{0}}{2}+\summe_{n=1}^{\infty}(a_{n}cos(n*)+b_{n}sin(n*)). [/mm] Geben Sie die Formeln für die Koeffizienten [mm] a_{0},a_{n},b_{n},n\in\IN, [/mm] an.


Hallo, bei der Teilaufgabe a) müsste ich eigentlich alles haben und zur Teilaufgabe b) kann ich einen Tipp gebrauchen.



Aufgabe a) Hier muss ich die Orthogonalität paarweise und die Normierung bestimmen.

Skalarprdukt in [mm] L^{2}((-\pi,\pi),\IR): =\integral_{-\pi}^{\pi}{f(x)g(x) dx} [/mm]

Orthogonalität:

[mm] =\bruch{1}{\wurzel{2}*\pi}\integral_{-\pi}^{\pi}{cos(nx) dx}=\bruch{1}{\wurzel{2}*\pi}[\bruch{1}{n}sin(nx)]^{\pi}_{-\pi}=0 [/mm]

( Nullstellen von sin(x) sind auch Nullstellen von sin(nx) [mm] \forall n\in\IN [/mm] )

[mm] =\bruch{1}{\wurzel{2}*\pi}\integral_{-\pi}^{\pi}{sin(nx) dx}=\bruch{1}{\wurzel{2}*\pi}[\bruch{1}{n}(-)cos(nx)]^{\pi}_{-\pi}=0 [/mm]

( -cos(nx) ist eine gerade Funktion, also -cos(nx)=-cos(-nx) [mm] \forall n\in\IN [/mm] )

[mm] =\bruch{1}{\pi}\integral_{-\pi}^{\pi}{sin(nx)cos(nx) dx}=\bruch{1}{\pi}(\bruch{1}{n}[sin^{2}(nx)]^{\pi}_{-\pi}-\integral_{-\pi}^{\pi}{sin(nx)\bruch{1}{n}cos(nx)n dx} [/mm]
[mm] \Rightarrow \bruch{2}{\pi}\integral_{-\pi}^{\pi}{sin(nx)cos(nx) dx}=\bruch{1}{n\pi}[sin^{2}(nx)]^{\pi}_{-\pi} [/mm]
[mm] \Rightarrow \bruch{1}{\pi}\integral_{-\pi}^{\pi}{sin(nx)cos(nx) dx}=\bruch{1}{2n\pi}[sin^{2}(nx)]^{\pi}_{-\pi}=0 [/mm]

(erste Schritt mit partieller Integration, Nullstellen von sin(x) sind auch Nullstellen von sin(nx) gilt logischerweise auch für [mm] sin^{2}(x) [/mm] und [mm] sin^{2}(nx) \forall n\in\IN [/mm] )

Normierung:

durch Skalarprodukt induzierte Norm: [mm] \parallel f(x)\parallel=\integral_{-\pi}^{\pi}{(f(x))^{2} dx} [/mm]

[mm] \parallel C_{0}\parallel=\integral_{-\pi}^{\pi}{\bruch{1}{2\pi} dx}=\bruch{1}{2}-(-)\bruch{1}{2}=1 [/mm]

[mm] \parallel C_{n}\parallel=\bruch{1}{\pi}\integral_{-\pi}^{\pi}{cos^{2}(nx) dx}=\bruch{1}{\pi}\integral_{-\pi}^{\pi}{cos(nx)*cos(nx) dx} [/mm]
partielle Integration [mm] \Rightarrow \bruch{1}{\pi}(\bruch{1}{n}*[sin(nx)*cos(nx)]^{\pi}_{-\pi}-\integral_{-\pi}^{\pi}{\bruch{1}{n}*sin(nx)*(-)sin(nx)*n dx})=\bruch{1}{\pi}(\bruch{1}{n}*[sin(nx)*cos(nx)]^{\pi}_{-\pi}+\integral_{-\pi}^{\pi}{1-cos^{2}(nx) dx})=\bruch{1}{\pi}(\bruch{1}{n}*[sin(nx)*cos(nx)]^{\pi}_{-\pi}+2\pi-\integral_{-\pi}^{\pi}{cos^{2}(nx) dx}) [/mm]
[mm] \Rightarrow 2*\integral_{-\pi}^{\pi}{\bruch{1}{\pi}cos^{2}}=\bruch{1}{\pi}(\bruch{1}{n}*[sin(nx)*cos(nx)]^{\pi}_{-\pi}+2\pi) [/mm]
[mm] \Rightarrow \integral_{-\pi}^{\pi}{\bruch{1}{\pi}cos^{2}}=\bruch{1}{\pi}(\bruch{1}{2n}*[sin(nx)*cos(nx)]^{\pi}_{-\pi}+\pi) [/mm]
[mm] sin(nx)*cos(nx)=\bruch{sin(2nx)}{2}\Rightarrow \bruch{1}{\pi}(\bruch{1}{4n}*\underbrace{[sin(2nx)]^{\pi}_{-\pi}}_{=0}+\pi)=\bruch{\pi}{\pi}=1 [/mm]

Analog [mm] \parallel S_{n}\parallel=1 [/mm]

Damit bildet das Funktionensystem [mm] {C_{0}, C_{n}, S_{n}:n\in\IN} [/mm] ein ONS in [mm] L^{2}((-\pi,\pi),\IR) [/mm]

Aufgabe b)
Jetzt muss ich zeigen, dass die 3 Funktion [mm] C_{0}, C_{n}, S_{n} [/mm] ein vollständiges ONS in [mm] L^{2}((-\pi,\pi),\IR) [/mm] bilden, also eine ONB. Wie kann ich das zeigen? Wenn ich das gezeigt habe, kann man alle Funktionen aus [mm] L^{2}((-\pi,\pi),\IR) [/mm] mit abzählbar unendlich vielen Funktionen der ONB darstellen. Die Fourrierreihe bezüglich der ONB ist dann gerade die Reihendarstellung einer Funktion aus [mm] L^{2}((-\pi,\pi),\IR) [/mm] und die Koeffizienten sind gerade [mm] , [/mm] und [mm] [/mm]

Vielen Dank für eure Mühe im voraus!
Mfg

Diese Frage habe ich in keinem anderen Forum gestellt!

        
Bezug
ONB & Fourrierreihe in L²: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Fr 31.05.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]