www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Nullstellen und Extremstellen
Nullstellen und Extremstellen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen und Extremstellen: Ansatz
Status: (Frage) beantwortet Status 
Datum: 21:20 Di 09.09.2014
Autor: truthanhn

Aufgabe
Gegeben ist die Funktionenschar ft [mm] (t\in\IR). [/mm] Bestimmen Sie die Nullstellen sowie Hoch-, Tief- und Wendepunkte und skizzieren Sie die Graphgen für t = 1, t = 2, und t = 3.

ft(x) = [mm] (x+t)^3 [/mm]

Hallo, ich komme nicht weiter.
Wie kann ich hier mit den zwei Variablen arbeiten? Wir haben das noch nicht gemacht.
Ich kann es weder auflösen nach x noch sonst etwas. Bitte um Hilfe !

Danke


        
Bezug
Nullstellen und Extremstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 Di 09.09.2014
Autor: abakus


> Gegeben ist die Funktionenschar ft [mm](t\in\IR).[/mm] Bestimmen Sie
> die Nullstellen sowie Hoch-, Tief- und Wendepunkte und
> skizzieren Sie die Graphgen für t = 1, t = 2, und t = 3.
> ft(x) = [mm](x+t)^3[/mm]

>

> Hallo, ich komme nicht weiter.
> Wie kann ich hier mit den zwei Variablen arbeiten? Wir
> haben das noch nicht gemacht.
> Ich kann es weder auflösen nach x noch sonst etwas. Bitte
> um Hilfe !

>

> Danke

>
Hallo,
t IST KEINE Variable. Die Verwendung des Parameters t ist nur eine Zusammenfassung von unendlich vielen Möglichkeiten zur Wahl eines KONSTANTEN (nicht eines variablen) Summanden in der Klammer (x+...).

Schlimmer wäre es, wenn du als Hausaufgabe 1000 nahezu identische Aufgaben lösen müsstest wie:

"Untersuche die Funktionen [mm]f(x)=(x+7)^3[/mm], [mm]f(x)=(x+10)^3[/mm], [mm]f(x)=(x+27)^3[/mm], [mm]f(x)=(x+888)^3[/mm], [mm]f(x)=(x+(-18))^3[/mm] ... auf Nullstellen, Hoch- und Tiefpunkte, ..."
Es ist also t ein ganz normaler Summand wie 10, 27, 888 usw. (und muss bei Ableitungen genau so behandelt werden, wie du es auch mit konkreten Zahlen machen würdest).
Gruß Abakus 

Bezug
                
Bezug
Nullstellen und Extremstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:46 Di 09.09.2014
Autor: truthanhn

und wie löse ich die zwei buchstaben auf ? also wie ist davon z.B. die Ableitung?

Bezug
                        
Bezug
Nullstellen und Extremstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:24 Di 09.09.2014
Autor: chrisno

Ich habe folgenden Ratschlag:
Schreib anstelle von t eine rote 5. Dann rechnest Du wie immer. Nur darfst Du nie die rote 5 mit verrechnen. Falls da also $2 [mm] \cdot \red{5}$ [/mm] steht, dann darfst Du das nicht zu 10 zusammenfassen.
Wenn Du soweit fertig bist, dann ersetzt Du die rote 5 wieder durch t.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]