Normalverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
|
Hallo!
Ich versuche gerade folgende Aufgabe zu lösen:
[mm] X_{1} [/mm] ~ [mm] N(\mu_{1},\sigma_{1}^2) [/mm] und [mm] X_{2} [/mm] ~ [mm] N(\mu_{2},\sigma_{2}^2) [/mm] seien unabhängige Zufallsvariable.
Zeigen Sie, dass [mm] X_{1}+X_{2} [/mm] ~ [mm] N(\mu_{1}+\mu_{2},\sigma_{1}^2+\sigma_{1}^2) [/mm] gilt.
Die Normalverteilung ist ja folgendermaßen definiert:
[mm] P((-\infty,x])=\integral_{-\infty}^{x} {\bruch{1}{\wurzel[]{2\pi}*\sigma}*e^{-\bruch{(u-\mu)^{2}}{2\sigma^{2}}} du}
[/mm]
Ich habe solche Aufgaben schon für die Binomialverteilung und die Poissonverteilung gemacht. Die habe ich auch immer hinbekommen. Habe da immer die Faltungsformel
[mm] P((X_{1}+X_{2})=k)=\summe_{s=0}^{k}P(X_{1}=s)*P(X_{2}=k-s)
[/mm]
benutzt.
Mein Problem ist jetzt, dass ich die Wahrscheinlichkeiten für die Normalverteilung nicht kenne und nicht weiß, wie ich da einsetzen müsste.
Ich hoffe, mir kann jemand helfen!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:39 Sa 09.07.2005 | Autor: | Jazzy |
Hi,
Dein Ansatz mit der "Faltungsformel" funktioniert bei diskreten Verteilungen auf Z.
Die Gaussverteilung ist eine stetige Verteilung, hier geht die Summe in der Faltungsformel in ein Integral über.
Am einfachsten geht die Aufgabe über die Fouriertransformation. Die Verteilung von [mm] X_1+X_2 [/mm] ergibt sich (wegen der Unabhängigkeit) aus dem Faltungsprodukt der Verteilungen. Diese geht in das Produkt ihrer Fouriertransformierten über. Dann brauchst Du nur noch die Potenzrechengesetze :)
Gruß,
Jazzy
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:46 So 10.07.2005 | Autor: | qwert_z |
Dankeschön!
Habe gleich mal in meinem Buch unter"Fouriertransformation" nachgeschlagen und auch was gefunden!
Dann werde ich die Aufgabe bestimmt hinbekommen!
|
|
|
|