www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Norm einer Matrix
Norm einer Matrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Norm einer Matrix: Frage
Status: (Frage) beantwortet Status 
Datum: 20:56 Fr 22.04.2005
Autor: Crispy

Sei die Norm einer Matrix [mm]A=(\alpha_{ik}) \in \IR[/mm] definiert durch:
[mm] \left| \left| A \right| \right|=\wurzel{\summe_{i,k=1}^{n} (\alpha_{ik})^2}[/mm]
Aufgabe a)
Für [mm]A \in \IR^{2\times2}[/mm] und [mm]x \in \IR^{2}[/mm] mit kanonischem Skalarprodukt beweise man die Schwarzsche Ungleichung:
[mm] \left| \left| Ax \right| \right| \le \left| \left| A \right| \right| \left| \left| x \right| \right|[/mm]
Aufgabe b)
Man führe den Beweis für allg. Dimension n durch.

Mein Ansatz zu a)
Sei [mm]A= \pmat{ a & b \\ c & d }[/mm] und [mm]x=\vektor{x_1 \\ x_2}[/mm]
Dann erhalte ich nach Umformen folgende Ungleichung:
[mm]\wurzel{(a^2+c^2)*x_1^2+(b^2+d^2)*x_2^2 + 2x_1x_2(ab+cd)} \le\wurzel{a^2+b^2+c^2+d^2}*\wurzel{x_1^2+x_2^2}[/mm]

Leider habe ich keine Idee, wie man die Gültigkeit dieser Ungelichung zeigt, noch finde ich einen Ansatz für die Teilaufgabe b.

Schon mal Danke für Eure Hilfe,
Crispy

        
Bezug
Norm einer Matrix: Nachfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:13 Fr 22.04.2005
Autor: Stefan

Hallo Crispy!

Kennt ihr schon die gewöhnliche (Cauchy-)Schwarzsche Ungleichung

[mm] $\sum\limits_{i=1}^n x_iy_i \le \left( \sum\limits_{i=1}^n x_i^2 \right)^{\frac{1}{2}} \cdot \left( \sum\limits_{i=1}^n y_i^2 \right)^{\frac{1}{2}}$ [/mm] ?

Dann ist die Aufgabe nämlich plötzlich sehr einfach...

Könntest du mir das gerade beantworten? Dann helfe ich dir weiter. Danke. :-)

Liebe Grüße
Stefan

Bezug
                
Bezug
Norm einer Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:04 Fr 22.04.2005
Autor: Crispy


> Hallo Crispy!
>  
> Kennt ihr schon die gewöhnliche (Cauchy-)Schwarzsche
> Ungleichung
>  
> [mm]\sum\limits_{i=1}^n x_iy_i \le \left( \sum\limits_{i=1}^n x_i^2 \right)^{\frac{1}{2}} \cdot \left( \sum\limits_{i=1}^n y_i^2 \right)^{\frac{1}{2}}[/mm]  ?

Hallo Stefan,
ja, die kenne ich - erkenne aber nicht wie ich die anwenden soll -  denn in dieser Gleichung ist ja links keine Wurzel.
Danke für deine Hilfe, Crispy

Bezug
        
Bezug
Norm einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 22:16 Fr 22.04.2005
Autor: Stefan

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Crispy!

Sehr gut, dann rechne ich jetzt direkt mal den allgemeinen Teil vor:

$\left\Vert Ax\right\Vert$

$= \left( \sum\limits_{i=1}^n \left( \sum\limits_{j=1}^n a_{ij}x_j \right)^2 \right)^{\frac{1}{2}}$

$\stackrel{(C.S.)}{\le} \left( \sum\limits_{i=1}^n \left( \left( \sum\limits_{j=1}^n a_{ij}^2 \right)^{\frac{1}{2}} \cdot \left( \sum\limits_{j=1}^n x_j^2 \right)^{\frac{1}{2}} \right)^2 \right)^{\frac{1}{2}}$

$= \left( \sum\limits_{j=1}^n x_j^2 \cdot \left(\sum\limits_{i,j=1}^n a_{ij}^2 \right) \right)^{\frac{1}{2}$

$= \left( \sum\limits_{i,j=1}^n a_{ij}^2 \right)^{\frac{1}{2}} \cdot \left( \sum\limits_{j=1}^n x_j^2 \right)^{\frac{1}{2}}$

$= \left\Vert A \right\Vert \cdot \left\Vert x \right\Vert$.

Viele Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]