www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Navier-Stokes-Gleichung
Navier-Stokes-Gleichung < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Navier-Stokes-Gleichung: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:16 Mo 02.03.2009
Autor: Kreator

Aufgabe
Advektive Strömung
Diese Aufgabe dient der Veranschaulichung des advektiven Anteils in den Bilanzgleichungen. Betrachten Sie einen Wasserfall. Die Fallhöhe beträgt 100m. Der Wasserfall ist zeitlich stationär und reibungslos.
a) Diskutieren Sie alle Terme der Navier-Stokes-Gleichung?
b) Welche Terme verschwinden?
c) Benutzen Sie die resultierende Gleichung, um die Geschwindigkeit des Wassers beim Aufprall am Fuss des Wasserfalls auszurechnen.

Aufgabe a) und b) habe ich gelöst. Dabei habe ich angenommen, das es sich nicht um ein rotierendes System hadelt, wodurch der Coriolis-Term in der Navier-Stokes-Gl. rausfällt.  Mit den übrigen Annahmen komme ich auf folgende Gleichung für die z-Komponente:

[mm] u*\bruch{\partial w}{\partial x} [/mm] + [mm] v*\bruch{\partial w}{\partial y} [/mm] + [mm] w*\bruch{\partial w}{\partial z} [/mm] =- [mm] \bruch{1}{roh}*\bruch{\partial p}{\partial z} [/mm] - g

Wie komme ich nun weiter? Kann ich z. B. einfach annehmen, dass die Geschwindigkeiten u und v gleich Null sind und dass der Druckgradient in z-Richtung ebenfalls Null ist (dann wäre die Gleichung einfach zu lösen :-)

        
Bezug
Navier-Stokes-Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:46 Mo 02.03.2009
Autor: Kroni

Hi,

dass die [mm] $u_x$ [/mm] und [mm] $u_y$-Komponente [/mm] Null ist, könnte man annehmen, also dass der Wasserfall senkrecht nach unten fällt.

Eigentlich kann man auch davon ausgehen, dass es keinen Druckgradienten gibt. Das einzige, was man annehmen könnte wäre, dsas man den Wasserfall als "Wassertopf" der Höhe h annimmt, wo dann [mm] $p(h)=\rho [/mm] g h$ gelten würde. Aber ich denke, dass die Wassertropfen dort schon so entkoppelt sind, dass es keinen Druckgradienten gibt. Den Luftdruck auf 100m kann man eg auch als konstant ansetzen, so dass sich der Term schon vereinfachen könnte.

LG

Kroni

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]