Münzwurf < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 11:12 Mo 08.11.2010 | Autor: | Ultio |
Aufgabe | Eine Münze, bei der mit Wahrscheinlichkeit p [mm] \in [/mm] (0; 1) "Kopf" fällt, werde beliebig oft unabhängig geworfen. Wir definieren die Zufallsvariable [mm] X_j [/mm] , die angibt, nach wie vielen Würfen genau j-mal "Kopf" gefallen ist.
(a) Bestimmen Sie den Erwartungswert und die Varianz der Zufallsvariablen [mm] X_j [/mm] .
(b) Ermitteln Sie die Kovarianz und die Korrelation der Zufallsvariablen [mm] X_j [/mm] und [mm] X_k [/mm] für j > k. |
Hallo ihr,
wollte fragen ob mir jemand beim Vereinfachen helfen kann. Komme dabei irgendwie nicht weiter.
zum Aufgabenteil a:
sei n die Anzahl der Würfe für j- maliges eintreffen des Ereignisses "Kopf". Es gilt doch
[mm] P(X=X_j)= \vektor{n \\ j} p^j (1-p)^{n-j}
[/mm]
zum Erwartungswert:
[mm] E(X_j) [/mm] = [mm] \summe_{n=j}^{\infty} X_j P(X=X_j) [/mm] = [mm] \summe_{n=j}^{\infty} X_n \vektor{n \\ j} p^j (1-p)^{n-j}
[/mm]
dabei gibt [mm] X_n [/mm] die Anzhahl der Würfe an!
Damit ist doch die Frage geklärte wie viele Würfe erwartet werden um j-mal "Kopf" zu erzielen.
Zur Varianz:
[mm] var(X_j) [/mm] = [mm] \summe_{n=j}^{\infty} (X_n [/mm] - [mm] E(X_j))^2 [/mm] = [mm] \summe_{n=j}^{\infty} E(X_n [/mm] - [mm] \summe_{n=j}^{\infty} X_n \vektor{n \\ j} p^j (1-p)^{n-j})^2 \vektor{n \\ j} p^j (1-p)^{n-j}
[/mm]
wie kann ich diesen Term vereinfachen? Oder sollte ich lieber den Ansatz var(X) = [mm] (E(X^2)) [/mm] - [mm] (E(X))^2 [/mm] nutzen?
zum Aufgabenteil b:
zur Covarianz:
[mm] cov(X_j,X_k) [/mm] = [mm] E(X_j X_k) [/mm] - [mm] E(X_j) E(X_k) =\summe_{n=j}^{\infty} X_n^2 \vektor{n \\ j}\vektor{n \\ k} p^{j+k} (1-p)^{2n-j-k} [/mm] - [mm] \summe_{n=j}^{\infty} X_n \vektor{n \\ j} p^j (1-p)^{n-j} [/mm] * [mm] \summe_{n=k}^{\infty} X_n \vektor{n \\ k} p^k (1-p)^{n-k}
[/mm]
zur Korrelation:
corr = [mm] \bruch{cov(X_j X_k)}{(var(X_j) * var(X_k))^{1/2}} [/mm] = [mm] \bruch{\summe_{n=j}^{\infty} X_n^2 \vektor{n \\ j}\vektor{n \\ k} p^{j+k} (1-p)^{2n-j-k} - \summe_{n=j}^{\infty} X_n \vektor{n \\ j} p^j (1-p)^{n-j} * \summe_{n=k}^{\infty} X_n \vektor{n \\ k} p^k (1-p)^{n-k}
}{\summe_{n=j}^{\infty} E(X_n - \summe_{n=j}^{\infty} X_n \vektor{n \\ j} p^j (1-p)^{n-j})^2 \vektor{n \\ j} p^j (1-p)^{n-j} * \summe_{n=k}^{\infty} E(X_n - \summe_{n=k}^{\infty} X_n \vektor{n \\ k} p^k (1-p)^{n-k})^2 \vektor{n \\ k} p^k (1-p)^{n-k}}
[/mm]
Diese Terme der Kovarianz und Korrelation kann ich irgendwie nicht vereinfachen, verrechne mich andauernd.
Vielen Dank im Voraus.
Gruß
Felix
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:20 Mi 10.11.2010 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|