Monotonieverhalten < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:29 Sa 23.04.2011 | Autor: | Roffel |
Aufgabe | Zeigen Sie, dass die Funktion
f(x)= [mm] x*ln(1+\bruch{2}{x}) [/mm] für x > 0
Streng monoton wachsend ist. |
Hi
Also normal würde ich das mit f'(x) > 0 machen...
da kommt dann bei mir raus
f'(x)= [mm] ln(1+\bruch{2}{x}) [/mm] - [mm] \bruch{2}{x+2} [/mm]
und jetzt muss ich ja irgendwie zeigen das f'(x) größer 0 ist, wenn x>0
wie mach ich das denn?
ich hät jetzt gesagt:
[mm] \limes_{x\rightarrow\infty} f'(x)=ln(1+\bruch{2}{x}) [/mm] - [mm] \bruch{2}{x+2}=0
[/mm]
also jetzt weiß man ja das f'(x) sich 0 annähert.. aber das sagt mir ja nicht unbedingt das f(x) streng monoton wachsend ist oder etwa doch???
in ein anderen Lösung berechnen die noch f''(x)
da würde dann hier bei mir
f''(x)= [mm] \bruch{-4}{(x+2)^2*x} [/mm] rauskommen
und da sieht man dann das für x>0 f''(x) kleiner 0 immer ist. ok. und wenn f''(x) < 0 ist dann muss ja f'(x) streng monoton fallend sein... aber ich versteh noch nicht den Zusammenhang, dass wenn man weiß das f'(x) streng monoton fallend ist , das dann automatisch f(x) streng monton wachsend sein soll...kann mir das jemand erklären ? und kann man oder muss man es dann immer noch mit der 2ten ableitung machen, weil eigentlich muss dann ja nur zeigen dachte ich das f'(x) > 0 ist.. oder kann man das hier bei dieser aufgabe halt nicht zeigen.. häää :)
Danke
Gruß
|
|
|
|
Moin,
> Zeigen Sie, dass die Funktion
> f(x)= [mm]x*ln(1+\bruch{2}{x})[/mm] für x > 0
> Streng monoton wachsend ist.
> Hi
> Also normal würde ich das mit f'(x) > 0 machen...
> da kommt dann bei mir raus
>
> f'(x)= [mm]ln(1+\bruch{2}{x})[/mm] - [mm]\bruch{2}{x+2}[/mm]
> und jetzt muss ich ja irgendwie zeigen das f'(x) größer 0
> ist, wenn x>0
> wie mach ich das denn?
> ich hät jetzt gesagt:
> [mm]\limes_{x\rightarrow\infty} f'(x)=\red{\lim_{x\to\infty}}ln(1+\bruch{2}{x})[/mm] -
> [mm]\bruch{2}{x+2}=0[/mm]
> also jetzt weiß man ja das f'(x) sich 0 annähert.. aber
> das sagt mir ja nicht unbedingt das f(x) streng monoton
> wachsend ist oder etwa doch???
>
> in ein anderen Lösung berechnen die noch f''(x)
> da würde dann hier bei mir
> f''(x)= [mm]\bruch{-4}{(x+2)^2*x}[/mm] rauskommen
> und da sieht man dann das für x>0 f''(x) kleiner 0 immer
> ist. ok. und wenn f''(x) < 0 ist dann muss ja f'(x) streng
> monoton fallend sein...
Da ist die Situation doch ganz gut!
f'(x) ist streng monoton fallend und [mm] \lim_{x\to\infty}f'(x)=0.
[/mm]
Daraus folgt ganz leicht f'(x)>0.
Sei andernfalls [mm] x_0>0 [/mm] mit [mm] f'(x_0)\leq0. [/mm] Dann gibt es [mm] x_1>x_0 [/mm] mit [mm] f'(x)\leq f'(x_1)<0 [/mm] für alle [mm] x\geq x_1 [/mm] wegen f' streng monoton fallend. Widerspruch zu [mm] \lim_{x\to\infty}f'(x)=0
[/mm]
> aber ich versteh noch nicht den
> Zusammenhang, dass wenn man weiß das f'(x) streng monoton
> fallend ist , das dann automatisch f(x) streng monton
> wachsend sein soll...kann mir das jemand erklären ? und
> kann man oder muss man es dann immer noch mit der 2ten
> ableitung machen, weil eigentlich muss dann ja nur zeigen
> dachte ich das f'(x) > 0 ist.. oder kann man das hier bei
> dieser aufgabe halt nicht zeigen.. häää :)
>
> Danke
>
> Gruß
>
LG
|
|
|
|