www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Monotonie und Intervalle
Monotonie und Intervalle < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monotonie und Intervalle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:04 Mi 22.02.2006
Autor: vavi

Aufgabe
Gegeben ist die Ableitungsfunktion f' einer Funktion f. In welchen Intervallen kann Monotonie vorliegen?
f'(x)= (x+1)³

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,
ich habe ein kleines Problem mit der Monotonie. Ich habe keine Ahnung wie ich diese Aufgabe anfangen soll. Vielleicht könntet ihr mir ja irgendwie weiterhelfen!!! Wäre echt super.
MFG Vavi

PS: Kurz noch eine Frage. Wie funktioniert das nochmal mit den eckigen Klammern, also den Intervallen? Wann muss ich ein offenes und wann ein geschlossenes Intervall setzen.



        
Bezug
Monotonie und Intervalle: Antwort
Status: (Antwort) fertig Status 
Datum: 15:19 Mi 22.02.2006
Autor: Yuma

Hallo Vavi,

> ich habe ein kleines Problem mit der Monotonie. Ich habe
> keine Ahnung wie ich diese Aufgabe anfangen soll.
> Vielleicht könntet ihr mir ja irgendwie weiterhelfen!!!

Du weißt ja sicher, dass die erste Ableitung $f'(x)$ die Steigung der zugrundeliegenden Funktion $f(x)$ ist. Daraus kann man schon erkennen, dass eine Funktion $f(x)$ in einem Bereich streng monoton steigt, genau dann wenn $f'(x)>0$ ist in diesem Bereich. Umgekehrt gilt: Eine Funktion $f(x)$ in einem Bereich streng monoton fallend genau dann, wenn $f'(x)<0$ ist in diesem Bereich.

> Gegeben ist die Ableitungsfunktion f' einer Funktion f. In
> welchen Intervallen kann Monotonie vorliegen?
> $f'(x)= [mm] (x+1)^{3}$ [/mm]

Schau dir die Ableitung mal genau an - wann (bzw. an welcher Stelle) kann die Null werden, wann ist sie größer Null, wann ist sie kleiner Null...?
Es gibt nur ein [mm] $x_{0}$ [/mm] für das [mm] $f'(x_{0})=0$ [/mm] gilt - welches wohl?
Was passiert rechts und links von dieser Nullstelle, gilt dort $f'(x)>0$ (streng monoton steigend) oder $f'(x)<0$ (streng monoton fallend)?
  

> PS: Kurz noch eine Frage. Wie funktioniert das nochmal mit
> den eckigen Klammern, also den Intervallen? Wann muss ich
> ein offenes und wann ein geschlossenes Intervall setzen.

Es kommt natürlich darauf an, was du darstellen willst:
Soll z.B. der Startpunkt im Intervall enthalten sein, der Endpunkt aber nicht, z.B. [mm] $0\le [/mm] x<2$, so schreibt man [mm] $x\in [/mm] [0,2[$.
Soll umgekehrt der Endpunkt im Intervall enthalten sein, der Startpunkt aber nicht, z.B. [mm] $-2 Beides wären sogenannte halboffene Intervalle.
Sollen sowohl der Start- als auch der Endpunkt im Intervall enthalten sein (geschlossenes Intervall), z.B. [mm] $1\le x\le [/mm] 5$, so schreibt man [mm] $x\in [/mm] [1,5]$, und sollen sowohl der Start- als auch der Endpunkt nicht im Intervall enthalten sein (offenes Intervall), z.B. $0<x<7$, so schreibt man [mm] $x\in [/mm] ]0,7[$.
Damit hätten wir alle Möglichkeiten! ;-)

Alles klar? Ansonsten bitte nochmal nachfragen! :-)

MFG,
Yuma

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]