www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Modell,Sterberate,Erwartungsw.
Modell,Sterberate,Erwartungsw. < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Modell,Sterberate,Erwartungsw.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:20 Fr 22.04.2016
Autor: sissile

Aufgabe
Angenommen, ein Mensch käme mit 32 Zähnen im Mund auf die Welt
und verlöre kontinuierlich Zähne mit einer Rate von einem verlorenen
Zahn alle 5 Jahre.  Was ist der Erwartungswert der Anzahl der Zähne
eines Menschen zum Zeitpunkt seines Todes, wenn eine konstante Ster-
berate h(t)=1/80 angenommen wird?

Hallo,
Die Sterberate wurde eingeführt als [mm] h(t)=\lim_{\Delta \rightarrow 0} \frac{W(A|B)}{\Delta t} [/mm]
B..Ereignis am leben zu sein zum Zeitpunkt t
A..Ereigenis zu sterben zwischen dem zeitpunkt t und t + [mm] \Delta [/mm] t

Wir hatten auch definiert die Überlebenden-Funktion S(t) als Wahrscheinlichkeit zum Zeitpunkt t zu leben.
In der Vorlesung haben wir: S'(t)= -h(t) S(t), S(0)=1 hergeleitet. Woraus S(t) [mm] =e^{- \int_0^t h(\tau) d\tau} [/mm] folgt. Ebenso haben wir hergeleitet dass die Dichtefunktion des Zeitpunktes der Ablebens f(t)=h(t)*S(t) ist.

Im Bsp.:
Ich bin mir nicht sicher ob ich das als diskretes Model mit der Menge [mm] M=\{0,1,2,3,..,32\} [/mm] also der Anzahl der Zähne hernehmen soll oder als kontunuierlicher Wahrscheinlichkeitsraum mit [mm] M=(0,\infty) [/mm] der Zeitpunkt des Todes?

S(t)= [mm] e^{- \int_0^t \frac{1}{80} d\tau }= e^{-\frac{1}{80} t} [/mm]
f(t)= h(t)*S(t)= [mm] \frac{1}{80} e^{-\frac{1}{80}t} [/mm]

Versuch1 - Diskrete Modell:
A...Anzahl der Zähle zum zeitpunkt des Todes.
E(A)= [mm] \sum_{x=0}^{32} x*W(\{x\}) [/mm]
[mm] W(\{x\})..Wahrscheinlichkeit [/mm] x Zähne zu haben.
Ich weiß nicht wie ich [mm] W(\{x\}) [/mm] mit der Information, dass er  kontinuierlich Zähne verliert mit einer Rate von einem verlorenen Zahn alle 5 Jahre und der Sterberate- ausrechne.

Versuch 2 - kontinuierliches Modell:
A(t)...Anzahl der Zähne zum Zeitpunkt t.
E(A)= [mm] \int_0^\infty [/mm] f(t) A(t)dt= [mm] \frac{1}{80} \int_0^\infty e^{-\frac{1}{80}t} [/mm] A(t) dt
A(1)=32*(1-0.002)=32*0.998 da er kontinuierlich pro Jahr 1/5=0.2 Zähne verliert.
A(2)= [mm] A(1)*0.998=32*0.998^2 [/mm]
d.h. [mm] A(t)=32*0.998^t [/mm]
E(A)= [mm] \frac{32}{80} \int_0^\infty e^{-\frac{1}{80}t}0.998^t [/mm] dt
Durch die Substitution: u= [mm] 0.998^t=e^{t ln(0.998)}, du=0.998^t*ln(0.998) [/mm] dt erhalte ich
[mm] \int \frac{u^{\frac{-1}{80* ln(0.998)}}}{log(0.998)} [/mm] du= [mm] \frac{1}{ln(0.998)} [/mm] ( [mm] \frac{80* u^{1- \frac{1}{80 ln(0.998)}}}{80* ln(0.998)-1})=\frac{1}{ln(0.998)} [/mm] ( [mm] \frac{80* (0.998^t)^{1- \frac{1}{80* ln(0.998)}}}{80* ln(0.998)-1}) [/mm]
Damit ist das Integral E(A)= [mm] \frac{32}{80} \int_0^\infty e^{-\frac{1}{80}t}0.998^t [/mm] dt= 27.5824

Das Ergebnis in 2 kommt mir ehrlichgesagt zu viel vor...Deshalb vermute ich dass A(t) nicht stimmt.

        
Bezug
Modell,Sterberate,Erwartungsw.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:03 Sa 23.04.2016
Autor: Al-Chwarizmi

Es ist doch ziemlich sonderbar, auf welche Ideen gewisse Leute kommen, die (angebliche) Mathematikaufgaben stellen. "Kontinuierlicher Zahnverlust": Das würde bedeuten, dass die Karies- oder welche Bakterien auch immer von Geburt des Babys an (falls es wirklich schon 32 Zähne hätte) schön gleichmäßig seine Zahnsubstanz zersetzen würden, und zwar so, dass man doch noch stets eine exakte Zahnanzahl feststellen könnte ...


Bezug
                
Bezug
Modell,Sterberate,Erwartungsw.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:23 Sa 23.04.2016
Autor: sissile

https://homepage.univie.ac.at/christian.schmeiser/MOD-UE2-eng.pdf
https://homepage.univie.ac.at/christian.schmeiser/MOD-UE2.pdf
Bsp5.

LG,
sissi

Bezug
                        
Bezug
Modell,Sterberate,Erwartungsw.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:45 Sa 23.04.2016
Autor: Al-Chwarizmi


>
> https://homepage.univie.ac.at/christian.schmeiser/MOD-UE2-eng.pdf
>  
> https://homepage.univie.ac.at/christian.schmeiser/MOD-UE2.pdf
>  Bsp5.
>  
> LG,
>  sissi


Hallo sissi

danke für die Quellenangaben.

So einen Schmarren kriegt man also an der Uni Wien serviert,
nach Wunsch noch auf Deutsch oder auf Englisch ...

Schönen Sonntag !

Al-Chw.




Bezug
        
Bezug
Modell,Sterberate,Erwartungsw.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:13 So 24.04.2016
Autor: leduart

Hallo
ich würde einfach nur den Erwartungswert für das Sterbealter ausrechnen, das durch 5 teilen und von 32 abziehen, da man erst mit 160 Jahren 0 Zähne hat, mit 80 immer noch die Hälfte und die "Ausfallrate" ja vom Alter unabhängig ist,.Aber selbst wenn man mit deinem A(t) rechnet, den Ausfall also auf 5 Jahre verteilt ist dein [mm] 0.998^t*32 [/mm] falsch. es fallen ja nicht ein fester % Satz pro Jahr aus, sondern eine feste Zahl, eben 0,2*t Zähne!
also hat man kontinuierlich gerechnet  nach t Jahren noch 32-0.2t Zähne, z.B nach 5 Jahren noch 31.
nach deiner Rechnung hat man nach 5 Jahren 31,65 Z nach 20 Jahren noch immer 30,74!
kurz der Verlust wächst linear mit der Zeit .
Gruß leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]