www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Minimum zweier Gleichungen
Minimum zweier Gleichungen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimum zweier Gleichungen: Aufgabe1
Status: (Frage) beantwortet Status 
Datum: 14:29 Sa 27.10.2007
Autor: maggi20

Aufgabe
Für zwei Funktionen f: R nach R sei die Funktion min(f,g) wie folgt definiert: min(f,g): R nach R, x nach min(f(x),(g)=.
a) Skizzieren Sie die Garphen der Funktionen f: R nach R, x nach x und g: R nach R, x nach [mm] x^2-4x+4, [/mm] sowie min(f,g) in dem INtervall (-4,4) (in einem BIld)
b) Definieren Sie min(f,g) mit Hilfe der Betragsfunktion.

Hallo,

koennte mir bitte jemand weiterhelfen. Ich verstehe nicht so ganz was mit dem Ausdruck min(f,g) gemeint sein soll. Wie kann ich mir das vorstellen? Und wie kann ich die Graphen in dem eindimensionelam Raum R zeichnen? Wie muss ich da vorgehen? (a)

zu(b): Ich weiss überhaupt nicht wo ich ansetzen soll... an der Definiton des Betrags? Aber wie kann ich das in Bezug setzen zu min(f,g).

BItte  helft mir weiter...ich muss das Blatt am Montag abgeben.

Mfg
maggi


        
Bezug
Minimum zweier Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:54 Sa 27.10.2007
Autor: alex42

Hallo,
also erstmal muss man verstehen, wie min(f,g) gemeint ist:
Hier wird eine Funktion [mm] min(f,g):$\IR\to\IR$ [/mm] definiert, mit

min(f,g)(x) := [mm] \begin{cases} f(x), \mbox{ falls } f(x)\le g(x) \\ g(x), \mbox{ falls } f(x) > g(x) \end{cases} [/mm]

Wenn du also bei a) die beiden Funktionen f und g in ein Koordinatensystem einzeichnest, ergibt sich der Graph der Funktion min(f,g) als die "untere Grenze der Graphen von f ung g". Anschaulicher wird es wahrscheinlich, wenn du dir eine Zeichnung anfertigst und dir für ein paar x-Werte min(f,g)(x) einzeichnest.
Dann kommt dir vielleicht auch schon eine Idee zur b).
Gruß Alex

Bezug
                
Bezug
Minimum zweier Gleichungen: Aufgabe1
Status: (Frage) überfällig Status 
Datum: 19:35 So 28.10.2007
Autor: maggi20

Hallo,

danke für die Hilfe. Ich hab die GRaphen gezeichnet und rausbekommen, dass der Graph von min (f,g) auf dem Graphen von f verläuft und dann bei der 1 mit g zusammenfällt. Hab ich das jetzt richtig verstanden, dass der Graph sich ergibt aus der obigen Definiton d.h. ,wenn ich z.b für die Funktion f für den Wert -4 wieder -4 rausbekomme und bei g für -4 dann 36 dann ist der erste Wert von min(f,g) die -4, ja.

LG

Bezug
                        
Bezug
Minimum zweier Gleichungen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:24 Di 30.10.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]