www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Minimierungsproblem
Minimierungsproblem < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimierungsproblem: Tipp
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:41 Do 10.10.2013
Autor: Katja444

Aufgabe
Finde a sodass p = z + ad die Funktion m(p) minimiert und |p|=radius gilt.
Hierbei ist m(p)=f+g^Tp + 0.5 p^TBp s.t. |p|<= radius.
g ist der Gradient und B die Hessematrix.

Das oben beschriebene Problem ist ein Unterproblem des CG-Steilhaug Algorithmus (http://sentientdesigns.net/math/mathbooks/Number%20theory/Numerical%20Optimization%20-%20J.%20Nocedal,%20S.%20Wright.pdf, S. 75). Es ist glaube ich sehr einfach, aber ich steh irgendwie auf dem Schlauch :(

Danke im Voraus!

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://forum.openopt.org/viewtopic.php?pid=2173#p2173

        
Bezug
Minimierungsproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 13:06 Do 10.10.2013
Autor: fred97


> Finde a sodass p = z + ad die Funktion m(p) minimiert und
> |p|=radius gilt.
>  Hierbei ist m(p)=f+g^Tp + 0.5 p^TBp s.t. |p|<= radius.
>  g ist der Gradient und B die Hessematrix.
>  Das oben beschriebene Problem ist ein Unterproblem des
> CG-Steilhaug Algorithmus
> (http://sentientdesigns.net/math/mathbooks/Number%20theory/Numerical%20Optimization%20-%20J.%20Nocedal,%20S.%20Wright.pdf,
> S. 75). Es ist glaube ich sehr einfach, aber ich steh
> irgendwie auf dem Schlauch :(
>  
> Danke im Voraus!
>  
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>  http://forum.openopt.org/viewtopic.php?pid=2173#p2173


Fragen:

1. Was ist f ?

2. Ist g der Gradient von f (an einer Stelle [mm] x_0 \in \IR^n) [/mm] ?

3. Ist B die Hessematrix von f (an einer Stelle [mm] x_0 \in \IR^n) [/mm] ?

4. Lautet die Funktion m vielleicht so:

     [mm] $m(p)=f(x_0)+g(x_0)^Tp [/mm] + 0.5 [mm] p^TB(x_0)p [/mm] $ ?

5. Was sind  die Größen z, a und d  in p = z + ad ?


FRED

Bezug
                
Bezug
Minimierungsproblem: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:25 Do 10.10.2013
Autor: Katja444

Tut mir leid für die undeutliche Aufgabenstellung.

Zu 1: f: [mm] \IR^n \to \IR [/mm]
Zu 2 bis 4: ja
Zu 5: z [mm] \in \IR^n, [/mm] d [mm] \in \IR^n, [/mm] a Skalar


Bezug
                        
Bezug
Minimierungsproblem: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Do 17.10.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                
Bezug
Minimierungsproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:50 Di 15.10.2013
Autor: Katja444

Kann mir keiner einen Tipp geben?

Bezug
                        
Bezug
Minimierungsproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:35 Di 15.10.2013
Autor: tobit09

Hallo Katja444 und herzlich [willkommenmr]!


Dass dir bisher noch niemand geantwortet hat, liegt vermutlich daran, dass du deine ergänzenden Informationen als Mitteilung statt als Frage gepostet hattest. Somit erschien dieser Thread nicht in der Liste der offenen Fragen.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]