www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Minimalpolynom
Minimalpolynom < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimalpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:30 Fr 13.04.2007
Autor: juerci

Aufgabe
Sei A eine quadratische Matrix über K. Zeige: Unter den Polynomen [mm] \{p(x) \in K[x] : p \not= 0 und p(A) = 0} [/mm] gibt es ein eindeutiges Polynom m(x) = [mm] x^{k} +a_{k-1}x^{k-1}+.....+a_{0} [/mm] von minimalen Grad k.

Die Eindeutigkeit is dabei kein Problem, wenn ich voraussetzen kann, dass es sicher normiert ist! Mein Problem liegt dabei, kann ich voraussetzen, dass es normiert ist, wie kann ich die Existenz nachweisen. Ich weiß, dass man das mit Idealen zeigen kann, aber das haben wir in der VO nie gemacht, gibt es dafür keinen alternativen Beweis?? DANKE IM VORAUS!!
MFG Jürgen

        
Bezug
Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 Fr 13.04.2007
Autor: SEcki


>  Die Eindeutigkeit is dabei kein Problem, wenn ich
> voraussetzen kann, dass es sicher normiert ist!

Hm, echt - wie machst du das? Also mir fällt da blos ein, dass der Polynomring ja ein Hauptidealring ist, daher folgt das.

>  Mein
> Problem liegt dabei, kann ich voraussetzen, dass es
> normiert ist, wie kann ich die Existenz nachweisen.

Schonmal von Cayley-Hamilton gehöhrt?

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]