www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Metrischer Raum, Offene Mengen
Metrischer Raum, Offene Mengen < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Metrischer Raum, Offene Mengen: Rückrichtung
Status: (Frage) beantwortet Status 
Datum: 18:53 So 19.11.2017
Autor: Son

Aufgabe
Ist (Ω,d) ein metrischer Raum und A⊆Ω ≠ ∅. Dann (A, d|_(AxA)) metrischer Raum. Zz:
Menge B⊆A offen ⇔ es gibt offene Menge U mit B=U∩A.

Die Hinrichtung habe ich bewiesen.
Wüsste vllt jemand wie die Rückrichtung bewiesen wird?

        
Bezug
Metrischer Raum, Offene Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:17 So 19.11.2017
Autor: UniversellesObjekt

Sei [mm] $x\in A\cap [/mm] U$. Insbesondere [mm] $x\in [/mm] U$. Da $U$ offen ist, gilt...
Da $x$ beliebig war, ist [mm] $A\cap [/mm] U$ offen in $A$.

Liebe Grüße
UniversellesObjekt

Bezug
                
Bezug
Metrischer Raum, Offene Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:59 Mo 20.11.2017
Autor: Son

Da U offen, ist der Schnitt offener Mengen offen --> Also ist B offen , da B=A [mm] \cap [/mm] U
geht es so?

Bezug
                        
Bezug
Metrischer Raum, Offene Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:02 Mo 20.11.2017
Autor: Son

Ich merk grad dass der Beweis völlig falsch ist.

Bezug
                        
Bezug
Metrischer Raum, Offene Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:15 Di 21.11.2017
Autor: fred97


> Da U offen, ist der Schnitt offener Mengen offen --> Also
> ist B offen , da B=A [mm]\cap[/mm] U
>  geht es so?

Nein.

Ich zeig Dir mal wie man das macht.

Dazu einige Bezeichnungen:ich Bezeichne mit [mm] d_0 [/mm] die Metrik [mm] d_{| A \times A} [/mm] und für $w [mm] \in \Omega$ [/mm] und r>0 sei

   [mm] $K(w,r)=\{v \in \Omega; d(v,w)
(offene Kugel (in [mm] \Omega) [/mm] um $w$ mit Radius r).

Für a [mm] \in [/mm] A sei [mm] K_0(a,r)=\{b \in A: d_0(b,a)
(offene Kugel (in A ) um $a$ mit Radius r).

Mache Dir klar: [mm] K_0(a,r)= [/mm] K(a,r) [mm] \cap [/mm] A.

Nun sei B eine Teilmenge von A. Zu zeigen ist:

B ist offen in A  [mm] \gdw [/mm] es ex. ein U offen in [mm] \Omega [/mm] mit B=A [mm] \cap [/mm] U.


Beweis:

1. Sei B offen in A. Zu jedem b [mm] \in [/mm] B gibt es also ein [mm] r_b>0 [/mm] mit [mm] K_0(b,r_b) \subseteq [/mm] B. Setze

U:= [mm] \bigcup_{b \in B}K(b,r_b). [/mm]

Dann ist U offen in [mm] \Omega [/mm]  (warum ?) und B=A [mm] \cap [/mm] U (warum ?).

2. Sei U offen in [mm] \Omega [/mm] und B=A [mm] \cap [/mm] U.

Ist dann b [mm] \in [/mm] B, so ist b [mm] \in [/mm] U. Also ex. ein r>0 mit K(b,r) [mm] \subset [/mm] U.

Dann ist [mm] K_0(b,r) \subset [/mm] B (warum ?).

Damit ist gezeigt: B ist offen in A.

Wenn Du nun die drei "warums ?" richtig beantwortest, hast Du den gewünschten Beweis.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]