www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Mengen Gleichungssystem
Mengen Gleichungssystem < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengen Gleichungssystem: Lösen sie folgendes Gl.system
Status: (Frage) beantwortet Status 
Datum: 16:25 Di 07.04.2009
Autor: enti2

Aufgabe
Lösen sie folgendes Gleichungssystem

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

also

A [mm] \cap [/mm] X = B
A [mm] \cup [/mm] X = C

für die Mengen A,B,C mit   B [mm] \subseteq [/mm] A [mm] \subseteq [/mm] C

Gesucht: X

sooo man hat es bei der Übung gerechnet allerdings blieb ich schon bei der ersten Zeile feststecken.

der Ü-Leiter meiselte an die Tafel:

X = C \ (A \ B)

   = A [mm] \cap [/mm] (C [mm] \cap (\overline{A \cap \overline{B}}) [/mm]    

[mm] (\overline{A} [/mm]  = Komplement A)


So meine Frage wie kommt er gute auf die erste Zeile? Woher nimmt er den Ausdruck.

Vielleicht steh ich ja grad aufn schlauch...danke für hilfe


        
Bezug
Mengen Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 17:52 Di 07.04.2009
Autor: Somebody


> Lösen sie folgendes Gleichungssystem
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> also
>  
> A [mm]\cap[/mm] X = B
>  A [mm]\cup[/mm] X = C
>  
> für die Mengen A,B,C mit  B [mm]\subseteq[/mm] A [mm]\subseteq[/mm] C
>  
> Gesucht: X
>  
> sooo man hat es bei der Übung gerechnet allerdings blieb
> ich schon bei der ersten Zeile feststecken.
>  
> der Ü-Leiter meiselte an die Tafel:
>  
> X = C \ (A \ B)
>  
> = A [mm]\cap[/mm] (C [mm]\cap (\overline{A \cap \overline{B}})[/mm]    
>
> [mm](\overline{A}[/mm]  = Komplement A)
>  
>
> So meine Frage wie kommt er gute auf die erste Zeile? Woher
> nimmt er den Ausdruck.


Bedenke einfach, dass [mm] $C\backslash (A\backslash [/mm] B)$ aufgrund der gegebenen Mengengleichungen dasselbe ist wie

[mm](A\cup X)\backslash(A\backslash X)[/mm]

In [mm] $A\cup [/mm] X$ ist ja sicher ganz $X$ enthalten. Wenn Du aus dieser Menge nun alle Elemente von $A$ entfernst, die nicht in $X$ liegen (dies sind also alle Elemente von [mm] $A\backslash [/mm] X$), dann bleiben nur noch die Elemente von $X$ übrig.


Bezug
        
Bezug
Mengen Gleichungssystem: Mengenbild
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:00 Di 07.04.2009
Autor: weightgainer

Hallo!

Die erste Zeile ergibt sich auch ganz deutlich, wenn man ein Mengenbild zeichnet, den algebraischen Weg hat Somebody ja beschrieben.

Mich irritiert allerdings die zweite Zeile, denn das kann eigentlich nicht sein. Denn [mm] X = A $ \cap $ (C $ \cap (\overline{A \cap \overline{B}}) $ [/mm] bedeutet, dass X eine Teilmenge von A sein muss - ich kann gerade nicht nachvollziehen, ob das sein KANN, aber es gibt meiner Ansicht nach Beispiele, dass es nicht so sein MUSS:
A = { 1, 2, 3, 4}
X = { 3, 4, 5, 6}
B = {3, 4}
C = {1, 2, 3, 4, 5, 6}
müssten die Voraussetzungen eigentlich erfüllen... aber X ist keine Teilmenge von A.

Gruß,
Martin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]