Maximum Value Function < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 03:03 Fr 16.10.2015 | Autor: | Cccya |
Aufgabe | Gegeben folgendes Optimierungsproblem: max [mm] 4x^{1/4}y^{1/4}+z
[/mm]
s.t. x+y+kz [mm] \le [/mm] 10, x [mm] \ge [/mm] 0, y [mm] \ge [/mm] 0, z [mm] \ge [/mm] 0, k > 1.
Zeigen Sie wie sich die maximum value function in k verändert, ohne das envelope theorem zu nutzen. |
Ich habe die value function als f(x(k),y(k),z(k),k) definiert, wobei x(k),y(k),z(k)
jeweils die Lösung des Optimierungsproblems bezeichnen.
Dann ist [mm] df(x(k),y(k),z(k),k)/dk=\bruch{\partial f(x(k),y(k),z(k),k)}{\partial x} \bruch{\partial x(k)}{\partial k}+\bruch{\partial f(x(k),y(k),z(k),k)}{\partial y} \bruch{\partial y(k)}{\partial k}+
[/mm]
[mm] \bruch{\partial f(x(k),y(k),z(k),k)}{\partial z} \bruch{\partial z(k)}{\partial k}+\bruch{\partial f(x(k),y(k),z(k),k)}{\partial k} [/mm]
Aus den notwendigen Bedingungen für das Optimierungsproblem folgt aber bereits, dass [mm] \bruch{\partial f(x(k),y(k),z(k),k)}{\partial x}=\bruch{\partial f(x(k),y(k),z(k),k)}{\partial y}=\bruch{\partial f(x(k),y(k),z(k),k)}{\partial z}=0. [/mm] Somit bleibt [mm] df(x(k),y(k),z(k),k)/dk=\bruch{\partial f(x(k),y(k),z(k),k)}{\partial k} [/mm] = [mm] -\lambda [/mm] z(k). Wobei [mm] \lambda [/mm] der erste Lagrangemultiplikator ist.
Kann ich das so machen?
Vielen Dank!
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 02:32 Sa 17.10.2015 | Autor: | Cccya |
Ist die Frage irgendwie unzureichend formuliert? Bin für jeden Hinweis dankbar!
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 03:20 Mo 19.10.2015 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 03:20 So 18.10.2015 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|