www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Maximalflughöhe
Maximalflughöhe < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximalflughöhe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:50 So 17.09.2006
Autor: Nastja0

Aufgabe
Der Innenbogen des "Gateway-Arch" in St. Louis (USA) lässt sich näherungsweise beschreiben (x in m) durch die Funktion f mit [mm] f(x)=187,5-1,579*10^{-2}x²-1,988*10^{-6}x^{4}. [/mm]
a) Berechnen Sie die Höhe und die Breite des Innenbogens.
b) Wie groß sind die Winkel, die der Innenbogen mit der Grundfläche bildet?
c) Bei einer Flugveranstaltung soll ein Flugzeug mit einer Flügelspannweite von 18m unter dem Bogen hindurchfliegen. Welche Maximalflughöhe muss der Pilot einhalten, wenn in vertikaler und horizontaler Richtung ein Sicherheitsabstand zum Bogen von 10m eingehalten werden muss?

Der Innenbogen ist 187,48m hoch und 161,5m breit. Der Innenwinkel beträgt 76,58°. Wie löse ich c)?

        
Bezug
Maximalflughöhe: Antwort
Status: (Antwort) fertig Status 
Datum: 23:36 So 17.09.2006
Autor: leduart

Hallo Nastja
du suchst die Höhe in der der Bogen (18+20)m breit ist, also x=19m und musst feststellen ob dann bei x=9m nach oben mindestens 10m abstand ist. wenn nicht geh von der Stelle x=9m 10m nach unten.
(mach die ne Skizze, dann verstehst du besser, was ich mein.)
Gruss leduart

Bezug
        
Bezug
Maximalflughöhe: Antwort
Status: (Antwort) fertig Status 
Datum: 23:53 So 17.09.2006
Autor: Teufel

Hallo!

In der Funktionsgleichung steht ja schon die Höhe: 187,5m. Wie kommst du da auf 187,48m? Bei dem Winkel hab ich auch 81,6° raus, vielleicht hast du etwas zu oft gerundet.

c) Genau wie schon gesagt wurde. Zeichne es dir mal auf. Ich habe das auch mal gemacht. Dann bin ich ertsmal davon ausgegangen, dass er höchstens 177,5m fliegen darf (das wär ja das allerhöchste um noch von 187,5m 10m Sicherheitsabstand zu haben). Danach könntest du schauen bei welchen x-Werten die Parabel diesen Wert annimmt und ob das auch mit dem Sicherheitsabstand hinhaut. Weiterhin bin ich von ausgegangen, dass er genau in der Mitte fliegt.

Bezug
                
Bezug
Maximalflughöhe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:23 Mo 18.09.2006
Autor: Nastja0

Dankeschön.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]