www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Matrix bezüglich zweier Basen
Matrix bezüglich zweier Basen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix bezüglich zweier Basen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 02:45 So 02.02.2014
Autor: Cccya

Aufgabe
Die lineare Abbildung f: R3 --> R2 sei bezüglich der Standardbasen durch die Matrix [mm] \pmat{ 4 & 2 & 3 \\ 8 & -1 & 2 } [/mm] gegeben. Es sein nun B=
((-1,0,2), (2,-1,2),(2,-2,1)) eine weitere Basis des R3 und E=((5,7),(7,10)) eine weitere Basis des R2. Berechnen sie die Matrix von f bezüglich B und E.

Ich habe zunächst die Funktion als f(x,y,z)=(4x+2y+3z, 8x-y+2z) bestimmt. Dann habe ich die Elemente von B in f eingesetzt und die jeweiligen abgebildeten Element von B als Linearkombination von E dargestellt. Aus den Koeffizienten dieser Linearkombinationen hab ich dann die Matrix gebildet und bin auf
[mm] \pmat{ 48 & -27 & -70\\ -34 & 21 &51 } [/mm] gekommen. Ist das korrekt?

        
Bezug
Matrix bezüglich zweier Basen: Antwort
Status: (Antwort) fertig Status 
Datum: 03:08 So 02.02.2014
Autor: Sax

Hi,

das ist absolut korrekt.

Gruß Sax.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]