www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Maßtheorie Funktionen
Maßtheorie Funktionen < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maßtheorie Funktionen: Funktionen
Status: (Frage) beantwortet Status 
Datum: 13:01 Sa 11.11.2017
Autor: Son

Aufgabe
Sei [mm] f:\IR [/mm] -→ [mm] \IR [/mm] an höchstens endlich vielen Stellen unstetig. Dann ist f Borel-messbar.

Wie könnte ich es beweisen bzw. widerlegen?

        
Bezug
Maßtheorie Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:49 Sa 11.11.2017
Autor: fred97


> Sei [mm]f:\IR[/mm] -→ [mm]\IR[/mm] an höchstens endlich vielen Stellen
> unstetig. Dann ist f Borel-messbar.
>  Wie könnte ich es beweisen bzw. widerlegen?

Sei U die Menge der Unsetigkeitsstellen von f und V= [mm] \IR \setminus [/mm] U. Da U höchstens endlich ist, ist V offen.

Weiter ist die Einschränkung [mm] g:=f_{|V} [/mm] stetig. Nun sei M offen in [mm] \IR. [/mm] Dann ist [mm] g^{-1}(M) [/mm] offen in V, also offen in [mm] \IR [/mm] (V ist offen !).

Es ist

(*) [mm] f^{-1}(M)=g^{-1}(M) \cup (f^{-1}(M) \cap [/mm] U)

Die Menge [mm] f^{-1}(M) \cap [/mm] U ist höchstens endlich, also Borelsch. Damit folgt aus (*):

Für jede offene Menge M ist  [mm] f^{-1}(M) [/mm] Borelsch.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]