www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Maß des Schnitts muss 0 sein
Maß des Schnitts muss 0 sein < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maß des Schnitts muss 0 sein: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:33 So 25.10.2020
Autor: Jellal

Guten Abend!

Ich soll folgendes zeigen: Sei [mm] (X,\Sigma,\mu) [/mm] ein Maßraum und [mm] E_{n}\in \Sigma [/mm] eine Folge von Mengen mit [mm] \summe_{n=1}^{\infty}\mu(E_{n})<\infty. [/mm]

Ich soll zeigen, dass dann [mm] \mu(\bigcap_{n=1}^{\infty}E_{n})=0. [/mm]
Dabei wird auf die Linearität des Lebesgue-Integrals für nicht-negative messbare Funktionen verwiesen, und auf die Tatsache, dass mit solchen Funktionen über
[mm] \nu(E)=\integral_{E}^{}{f(x) d\mu(x)} [/mm] neue Maße definiert werden.

Ich glaube aber, diesen Hinweis nicht zu brauchen.
Wenn [mm] \summe_{n=1}^{\infty}\mu(E_{n})<\infty, [/mm] dann muss [mm] \mu(E_{n}) [/mm] eine Nullfolge sein (die Maße sind nichtnegativ und die Reihe muss daher konvergieren). Dann folgt doch
[mm] \mu(\bigcap_{n=1}^{\infty}E_{n}) \le \mu(E_{n}) [/mm] für alle n wegen Monotonie, und daher auch 0 [mm] \le \mu(\bigcap_{n=1}^{\infty}E_{n}) \le \limes_{n\rightarrow\infty} \mu(E_{n}) [/mm] = 0.

Stimmt was nicht? Wie würde der Hinweis helfen?

vG.
Jellal

        
Bezug
Maß des Schnitts muss 0 sein: Antwort
Status: (Antwort) fertig Status 
Datum: 10:28 Mo 26.10.2020
Autor: fred97


> Guten Abend!
>  
> Ich soll folgendes zeigen: Sei [mm](X,\Sigma,\mu)[/mm] ein Maßraum
> und [mm]E_{n}\in \Sigma[/mm] eine Folge von Mengen mit
> [mm]\summe_{n=1}^{\infty}\mu(E_{n})<\infty.[/mm]
>  
> Ich soll zeigen, dass dann
> [mm]\mu(\bigcap_{n=1}^{\infty}E_{n})=0.[/mm]
>  Dabei wird auf die Linearität des Lebesgue-Integrals für
> nicht-negative messbare Funktionen verwiesen, und auf die
> Tatsache, dass mit solchen Funktionen über
> [mm]\nu(E)=\integral_{E}^{}{f(x) d\mu(x)}[/mm] neue Maße definiert
> werden.
>  
> Ich glaube aber, diesen Hinweis nicht zu brauchen.
>  Wenn [mm]\summe_{n=1}^{\infty}\mu(E_{n})<\infty,[/mm] dann muss
> [mm]\mu(E_{n})[/mm] eine Nullfolge sein (die Maße sind nichtnegativ
> und die Reihe muss daher konvergieren). Dann folgt doch
>  [mm]\mu(\bigcap_{n=1}^{\infty}E_{n}) \le \mu(E_{n})[/mm] für alle
> n wegen Monotonie, und daher auch 0 [mm]\le \mu(\bigcap_{n=1}^{\infty}E_{n}) \le \limes_{n\rightarrow\infty} \mu(E_{n})[/mm]
> = 0.
>  
> Stimmt was nicht?

Deine Argumentation ist richtig.

> Wie würde der Hinweis helfen?
>  
> vG.
>  Jellal


Bezug
                
Bezug
Maß des Schnitts muss 0 sein: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:45 So 01.11.2020
Autor: Jellal

Vielen Dank, Fred!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]