www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Prozesse" - Martingal
Martingal < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Martingal: Problem
Status: (Frage) beantwortet Status 
Datum: 16:27 Fr 02.01.2009
Autor: SorcererBln

Aufgabe
Zeige, dass ein nicht-negatives Martingal fast sicher $0$ bleibt, nachdem es zum ersten Mal die $0$ getroffen hat!

Ich weiß hier noch keine Lösungsstrategie. Sicherlich muss ich ein Martingalkonvergenzsatz anwenden. Vielleicht hat ja jemand einen Tipp?

        
Bezug
Martingal: Antwort
Status: (Antwort) fertig Status 
Datum: 17:00 Fr 02.01.2009
Autor: felixf

Hallo

> Zeige, dass ein nicht-negatives Martingal fast sicher [mm]0[/mm]
> bleibt, nachdem es zum ersten Mal die [mm]0[/mm] getroffen hat!
>  Ich weiß hier noch keine Lösungsstrategie. Sicherlich muss
> ich ein Martingalkonvergenzsatz anwenden. Vielleicht hat ja
> jemand einen Tipp?

Wenn du eine Zufallsvariable $X$ hast mit $X [mm] \ge [/mm] 0$ f.s., und du $E(X) = 0$ hast, dann gilt $X = 0$ f.s.

Du weisst also [mm] $X_t [/mm] = 0$ f.s. und hast $s > t$, und willst [mm] $X_s [/mm] = 0$ f.s. zeigen; da [mm] $X_s \ge [/mm] 0$ gilt reicht es also aus, [mm] $E(X_s) [/mm] = 0$ zu zeigen.

Wie kannst du jetzt die Martingaleigenschaft vielleicht verwenden? Bedenke, dass $E(E(X [mm] \mid \mathcal{F})) [/mm] = E(X)$ ist fuer alle [mm] $\sigma$-Algebren $\mathcal{F}$ [/mm] und alle Zufallsvariablen $X$.

LG Felix


Bezug
                
Bezug
Martingal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:35 Fr 02.01.2009
Autor: SorcererBln


> Hallo
>  
> > Zeige, dass ein nicht-negatives Martingal fast sicher [mm]0[/mm]
> > bleibt, nachdem es zum ersten Mal die [mm]0[/mm] getroffen hat!
>  >  Ich weiß hier noch keine Lösungsstrategie. Sicherlich
> muss
> > ich ein Martingalkonvergenzsatz anwenden. Vielleicht hat ja
> > jemand einen Tipp?
>
> Wenn du eine Zufallsvariable [mm]X[/mm] hast mit [mm]X \ge 0[/mm] f.s., und
> du [mm]E(X) = 0[/mm] hast, dann gilt [mm]X = 0[/mm] f.s.
>  
> Du weisst also [mm]X_t = 0[/mm] f.s. und hast [mm]s > t[/mm], und willst [mm]X_s = 0[/mm]
> f.s. zeigen; da [mm]X_s \ge 0[/mm] gilt reicht es also aus, [mm]E(X_s) = 0[/mm]
> zu zeigen.
>  
> Wie kannst du jetzt die Martingaleigenschaft vielleicht
> verwenden? Bedenke, dass [mm]E(E(X \mid \mathcal{F})) = E(X)[/mm]
> ist fuer alle [mm]\sigma[/mm]-Algebren [mm]\mathcal{F}[/mm] und alle
> Zufallsvariablen [mm]X[/mm].
>  
> LG Felix
>  

OK. Sei $n$ der erste Zeitpunkt, wo [mm] $X_n=0$ [/mm] f.s.

OK. Ich habe ja aufgrund der Martingaleigenschaft für alle [mm] $m\geq [/mm] n$

[mm] $E[X_m]=E[X_n]=0$ [/mm]           (*)

und daraus folgt also [mm] $X_m=0$ [/mm] für alle [mm] $m\geq [/mm] n$. Fertig.

Zu (*) beweis per Induktion nach m. Für $m=n$ ist die Behauptung klar. Für $m+1$ haben wir aufgrund der Martingaleigenschaft

[mm] $E[X_{m+1}|F_{m}]=X_m$, [/mm] also [mm] $E[E[X_{m+1}|F_{m}]]=E[X_m]=E[X_n]$ [/mm]

nach Induktionsvoraussetzung. Also mit der Eigenschaft der bedingten Erwartung

[mm] $E[X_{m+1}]=E[X_n]$, [/mm]

was wir zeigen wollten. Bist du damit einverstanden?

Vielen Dank für deinen Tipp!






Bezug
                        
Bezug
Martingal: Antwort
Status: (Antwort) fertig Status 
Datum: 01:07 Sa 03.01.2009
Autor: felixf

Hallo

> > > Zeige, dass ein nicht-negatives Martingal fast sicher [mm]0[/mm]
> > > bleibt, nachdem es zum ersten Mal die [mm]0[/mm] getroffen hat!
>  >  >  Ich weiß hier noch keine Lösungsstrategie.
> Sicherlich
> > muss
> > > ich ein Martingalkonvergenzsatz anwenden. Vielleicht hat ja
> > > jemand einen Tipp?
> >
> > Wenn du eine Zufallsvariable [mm]X[/mm] hast mit [mm]X \ge 0[/mm] f.s., und
> > du [mm]E(X) = 0[/mm] hast, dann gilt [mm]X = 0[/mm] f.s.
>  >  
> > Du weisst also [mm]X_t = 0[/mm] f.s. und hast [mm]s > t[/mm], und willst [mm]X_s = 0[/mm]
> > f.s. zeigen; da [mm]X_s \ge 0[/mm] gilt reicht es also aus, [mm]E(X_s) = 0[/mm]
> > zu zeigen.
>  >  
> > Wie kannst du jetzt die Martingaleigenschaft vielleicht
> > verwenden? Bedenke, dass [mm]E(E(X \mid \mathcal{F})) = E(X)[/mm]
> > ist fuer alle [mm]\sigma[/mm]-Algebren [mm]\mathcal{F}[/mm] und alle
> > Zufallsvariablen [mm]X[/mm].
>  >  
> > LG Felix
>  >  
>
> OK. Sei [mm]n[/mm] der erste Zeitpunkt, wo [mm]X_n=0[/mm] f.s.
>  
> OK. Ich habe ja aufgrund der Martingaleigenschaft für alle
> [mm]m\geq n[/mm]
>  
> [mm]E[X_m]=E[X_n]=0[/mm]           (*)
>  
> und daraus folgt also [mm]X_m=0[/mm] für alle [mm]m\geq n[/mm]. Fertig.
>  
> Zu (*) beweis per Induktion nach m. Für [mm]m=n[/mm] ist die
> Behauptung klar. Für [mm]m+1[/mm] haben wir aufgrund der
> Martingaleigenschaft
>  
> [mm]E[X_{m+1}|F_{m}]=X_m[/mm], also
> [mm]E[E[X_{m+1}|F_{m}]]=E[X_m]=E[X_n][/mm]
> nach Induktionsvoraussetzung. Also mit der Eigenschaft der
> bedingten Erwartung
>  
> [mm]E[X_{m+1}]=E[X_n][/mm],
>  
> was wir zeigen wollten. Bist du damit einverstanden?

Ja, bin ich :)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]