www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Prozesse" - Markovkette
Markovkette < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Markovkette: Theorem auch für bel. Menge?
Status: (Frage) beantwortet Status 
Datum: 21:50 Fr 24.10.2014
Autor: sick_of_math

Aufgabe
In unserer Vorlesung hatten wir folgendes Theorem für Markovketten:

Seien $0<n<N$ und [mm] $(X_n)_{n\in\mathbb{N}}$ [/mm] eine Markovkette. Dann gilt für alle [mm] $a_n\in [/mm] E$ (wobei $E$ der Zustandsraum ist) und alle Teilmengen [mm] $G\subseteq E^n, F\subseteq E^{N-n}$, [/mm] dass
$$
[mm] \mathbb{P}((X_{n+1},...,X_N)\in F|X_n=a_n,(X_{n-1},...,X_0)\in G)\\=\mathbb{P}((X_{n+1},...,X_N)\in F|X_n=a). [/mm]
$$

Jetzt ist folgende Frage gestellt:

Bleibt die Aussage des Theorems wahr, wenn [mm] $\left\{X_n=a\right\}$ [/mm] durch eine beliebige Menge [mm] $\left\{X_n\in A\right\}$ [/mm] (für ein [mm] $A\subseteq [/mm] E$) ersetzt wird?





Guten Abend,

ich habe versucht, das zu beweisen, wobei ich dabei das Theorem selbst und die [mm] $\sigma$-Additivität [/mm] von [mm] $\mathbb{P}$ [/mm] sowie [mm] $\left\{X_n\in A\right\}=\biguplus_{a_n\in A}(X_n=a_n)$ [/mm] verwendet habe:

$$
[mm] \mathbb{P}((X_{n+1},...,X_N)\in F|X_n\in A,(X_{n-1},...,X_0)\in [/mm] G)
$$

[mm] $$=\mathbb{P}((X_{n+1},...,X_N)\in F|\biguplus_{a_n\in A}(X_n=a_n)\cap(X_{n-1},...,X_0)\in [/mm] G)
$$

[mm] $$=\mathbb{P}((X_{n+1},...,X_N)\in F|\biguplus_{a_n\in A}[(X_n=a_n)\cap (X_{n-1},...,X_0)\in [/mm] G])
$$

[mm] $$=\frac{\mathbb{P}[(X_{n+1},...,X_N)\in F]\cap\biguplus_{a_n\in A}[(X_n=a)\cap (X_{n-1},...,X_0)\in G])}{\mathbb{P}(\biguplus_{a_n\in A}[(X_n=a_n)\cap (X_{n-1},...,X_0)\in G])} [/mm]
$$

[mm] $$=\frac{\sum_{a_n\in A}\mathbb{P}([(X_{n+1},...,X_N)\in F]\cap [ (X_n=a_n)\cap (X_{n-1},...,X_0)\in G])}{\mathbb{P}(\biguplus_{a_n\in A}[(X_n=a_n)\cap (X_{n-1},...,X_0)\in G])} [/mm]
$$

[mm] $$=\frac{\sum_{a_n\in A}\mathbb{P}((X_{n+1},...,X_N)\in F|X_n=a_n,(X_{n-1},...,X_0)\in G)\cdot\mathbb{P}(X_n=a_n,(X_{n-1},...,X_0)\in G)}{\mathbb{P}(\biguplus_{a_n\in A}[(X_n=a_n)\cap (X_{n-1},...,X_0)\in G])} [/mm]
$$

Wenn ich jetzt das gegebene Theorem anwende, kann ich die Summanden im Zähler schreiben als
$$
[mm] \mathbb{P}((X_{n+1},...,X_N)\in F|X_n=a_n,(X_{n-1},...,X_0)\in G)\cdot\mathbb{P}(X_n=a,(X_{n-1},...,X_0)\in [/mm] G) [mm] =\mathbb{P}((X_{n+1},...,X_N)\in F|X_n=a_n)\mathbb{P}(X_n=a_n,(X_{n-1},...,X_0)\in [/mm] G),
$$

sodass ich vorerst lande bei
$$
[mm] =\frac{\sum_{a_n\in A}\mathbb{P}((X_{n+1},...,X_N)\in F|X_n=a_n)\cdot \mathbb{P}(X_n=a_n, (X_{n-1},...,X_0)\in G)}{\mathbb{P}(\biguplus_{a_n\in A}[(X_n=a)\cap (X_{n-1},...,X_0)\in G])} [/mm]
$$


Nun weiß ich aber nicht mehr weiter.

Habe ich bis jetzt Recht, wenn ja, wie geht's weiter?


Vielleicht mache ich es mir auch viel zu schwer, ich weiß nicht. Vielleicht stimmt die Aussage ja auch gar nicht.

        
Bezug
Markovkette: Antwort (nicht fertig)
Status: (Antwort) noch nicht fertig Status 
Datum: 14:32 Sa 25.10.2014
Autor: dennis2

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Ich würde gerne ein Gegenbeispiel vorschlagen. Da ich mir nicht ganz sicher bin, dass es korrekt ist, lasse ich die Frage noch offen.

Betrachte die Markovkette mit Zustandsraum $E=\left\{0,1\right}$ und den Übergangswahrscheinlichkeiten $p_{01}=p_{10}=1$. Zudem sei $P(X_0=0)=P(X_0=1)=\frac{1}{2}$.

$N=2, n=1, F=G=\left\{0\right\}, A=\left\{0,1}\right\}$

Dann:

$P(X_2=0|X_1\in\left\{0,1\right\},X_0=0)=1$, da nämlich aus $X_0=0$ folgt, dass $X_1=1$ (also $X_1\in A$) und $X_2=0$.

Andererseits gilt aber meines Erachtens

$P(X_2=0|X_1\in A)=1/2$.


Sehe ich das richtig?

Bezug
                
Bezug
Markovkette: Bitte kontrollieren!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:54 Sa 25.10.2014
Autor: dennis2

Ich bitte darum, dass sich jemand Kompetenteres als ich mein Gegenbeispiel anschaut um zu beurteilen, ob es korrekt ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]