Markov Kette: Definitionen < Stochastik < Hochschule < Mathe < Vorhilfe
|
Hallo,
ich habe ein Buch in dem 3 äquivalente Definitionen zur Markov Kette gegeben sind:
(1)
[mm] $P(X_n [/mm] = s [mm] \mid X_0 [/mm] = [mm] x_0, X_1 [/mm] = [mm] x_1, \dots, X_{n-1} [/mm] = [mm] x_{n-1}) [/mm] = [mm] P(X_n [/mm] = s [mm] \mid X_{n-1} [/mm] = [mm] x_{n-1})$
[/mm]
[mm] $\forall [/mm] n [mm] \geq [/mm] 1, [mm] \forall [/mm] s, [mm] x_1, \dots, x_{n-1} \in [/mm] S$
(2)
[mm] $P(X_{n+1} [/mm] = s [mm] \mid X_{n_1} [/mm] = [mm] x_{n_1}, X_{n_2} [/mm] = [mm] x_{n_2}, X_{n_k} [/mm] = [mm] x_{n_k}) [/mm] = [mm] P(X_{n+1} [/mm] = s [mm] \mid X_{n_k} [/mm] = [mm] x_{n_k})$ [/mm]
[mm] $\forall n_1 [/mm] < [mm] n_2 [/mm] < [mm] n_k \leq [/mm] n$
(3)
[mm] $P(X_{m+n} [/mm] = s [mm] \mid X_0 [/mm] = [mm] x_0, X_1 [/mm] = [mm] x_1, \dots, X_{m} [/mm] = [mm] x_{m}) [/mm] = [mm] P(X_{m+n} [/mm] = s [mm] \mid X_{m} [/mm] = [mm] x_{m})$
[/mm]
[mm] $\text{für jedes } [/mm] m,n [mm] \geq [/mm] 0$
Erstmal habe ich eine Frage zur Definition (2):
Sollte nicht eigentlich heissen:
[mm] $P(X_{n+1} [/mm] = s [mm] \mid X_{n_1} [/mm] = [mm] x_{n_1}, X_{n_2} [/mm] = [mm] x_{n_2}, \dots, X_{n_k} [/mm] = [mm] x_{n_k}) [/mm] = [mm] P(X_{n+1} [/mm] = s [mm] \mid X_{n_k} [/mm] = [mm] x_{n_k})$ [/mm]
[mm] $\forall n_1 [/mm] < [mm] n_2 [/mm] < [mm] n_k \leq [/mm] n$
Dann wären mir zumindest die Richtungen
$(2) [mm] \Rightarrow [/mm] (1)$ und $(3) [mm] \Rightarrow [/mm] (1)$ klar.
Wie zeige ich nun zum Beispiel die Richtung $(1) [mm] \Rightarrow [/mm] (2)$?
Speziell bräuchte ich folgende Aussage für einen Beweis:
[mm] $P(X_{n} [/mm] = s [mm] \mid X_{0} [/mm] = [mm] x_{0}, X_{n-1} [/mm] = [mm] x_{n-1}) [/mm] = [mm] P(X_{n} [/mm] = s [mm] \mid X_{n-1} [/mm] = [mm] x_{n-1})$, [/mm] und das ist ja ein Fall von (2).
Ich hätte mir gedacht, ich wähle [mm] $x_1, \dots, x_{n-2} [/mm] so dass [mm] $\{X_1 = x_1\} [/mm] = [mm] \Omega, \dots \{ X_{n-2} = x_{n-2} \} [/mm] = [mm] \Omega$ [/mm] , denn dann wäre
[mm] $P(X_{n} [/mm] = s [mm] \mid X_{0} [/mm] = [mm] x_{0}, X_{n-1} [/mm] = [mm] x_{n-1}) [/mm] = [mm] P(X_n [/mm] = s [mm] \mid X_0 [/mm] = [mm] x_0, X_1 [/mm] = [mm] x_1, \dots, X_{n-1} [/mm] = [mm] x_{n-1}) [/mm] = [mm] P(X_n [/mm] = s [mm] \mid X_{n-1} [/mm] = [mm] x_{n-1})$
[/mm]
Aber das geht ja nur wenn [mm] $X_1, \dots X_{n-2}$ [/mm] konstant wären...
Wäre nett wenn mir jemand helfen kann.
Lg
|
|
|
|
Hiho,
> Erstmal habe ich eine Frage zur Definition (2):
> Sollte nicht eigentlich heissen:
>
> [mm]P(X_{n+1} = s \mid X_{n_1} = x_{n_1}, X_{n_2} = x_{n_2}, \dots, X_{n_k} = x_{n_k}) = P(X_{n+1} = s \mid X_{n_k} = x_{n_k})[/mm]
>
> [mm]\forall n_1 < n_2 < n_k \leq n[/mm]
Ja… also es gilt auch in der von dir angegebenen Form, mit $…$ ist es aber allgemeiner und vermutlich auch so gemeint.
> Dann wären mir zumindest die Richtungen
> [mm](2) \Rightarrow (1)[/mm] und [mm](3) \Rightarrow (1)[/mm] klar.
> Wie zeige ich nun zum Beispiel die Richtung [mm](1) \Rightarrow (2)[/mm]?
Also: Ja, man kann zeigen dass jede Aussage mit jeder anderen Äquivalent ist. Das muss man aber gar nicht!
Es reicht zu zeigen bspw. $(1) [mm] \Rightarrow [/mm] (2) [mm] \Rightarrow [/mm] (3) [mm] \Rightarrow [/mm] (1)$
Damit wären alle äquivalent.
In dem Fall hier würde ich dir empfehlen: $(3) [mm] \Rightarrow [/mm] (2) [mm] \Rightarrow [/mm] (1) [mm] \Rightarrow [/mm] (3)$
Wirklich Arbeit steckt da mMn dann nur in $(3) [mm] \Rightarrow [/mm] (2)$, was sich aber mit einem kleinen Kniff recht gut zeigen lässt
Zeige dazu erst mal als Vorbereitung: Aus (3) folgt auch:
$ [mm] P(X_{m+n} [/mm] = s [mm] \mid X_1 [/mm] = [mm] x_1, \dots, X_{m} [/mm] = [mm] x_{m}) [/mm] = [mm] P(X_{m+n} [/mm] = s [mm] \mid X_{m} [/mm] = [mm] x_{m}) [/mm] $
(beachte das fehlende [mm] $X_0 [/mm] = [mm] x_0$, [/mm] das musst du also irgendwie wieder "reinwurschteln" um (3) verwenden zu können. Die Definition der bedingten Wahrscheinlichkeit könnte da hilfreich sein ^^)
Gruß,
Gono
|
|
|
|
|
> Zeige dazu erst mal als Vorbereitung: Aus (3) folgt auch:
>
> [mm]P(X_{m+n} = s \mid X_1 = x_1, \dots, X_{m} = x_{m}) = P(X_{m+n} = s \mid X_{m} = x_{m})[/mm]
>
> (beachte das fehlende [mm]X_0 = x_0[/mm], das musst du also
> irgendwie wieder "reinwurschteln" um (3) verwenden zu
> können. Die Definition der bedingten Wahrscheinlichkeit
> könnte da hilfreich sein ^^)
>
Hi, vielen Dank für die Antwort.
Hier kann ich doch dann einfach ein [mm] $X_0$ [/mm] so wählen, dass [mm] \{X_0 = x_0 \} [/mm] = [mm] \Omega$?
[/mm]
dann ist
[mm] $P(X_{m+n} [/mm] = s, [mm] X_1 [/mm] = [mm] x_1, \dots, X_{m} [/mm] = [mm] x_{m}) [/mm] = [mm] P(X_{m+n} [/mm] = s, [mm] X_0 [/mm] = [mm] x_o, X_1 [/mm] = [mm] x_1, \dots, X_{m} [/mm] = [mm] x_{m})$
[/mm]
|
|
|
|
|
Hiho,
> Hier kann ich doch dann einfach ein [mm]$X_0$[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
so wählen
X_0 ist nicht zu wählen… du hast doch eine Markov-Kette gegeben.
Das ist eine Folge $(X_n)_{n\in\IN)$ von Zufallsvariablen, da ist $X_0$ gegeben und nix zu wählen…
Und ein $x_0$, so dass $\{X_0 = x_0\} = \Omega$ gilt, gibt es im Allgemeinen ja gar nicht… wer sagt dir, dass $X_0$ nur einen Zustand haben kann?
Aber: Natürlich kannst du $\Omega$ disjunkt zerlegen in die möglichen Zustände von $X_0$, d.h. es gilt: $\Omega = \bigcup_{k} \{X_0 = k\}$ und damit gilt $P(A) = \sum_{k} P(A \cap \{X_0 = k\})$
Wende das mal für $X_{m+n} = s$ an…
Gruß,
Gono
|
|
|
|
|
Hi
sorry ich muss nochmal nachfragen weil ich jetzt wieder nicht weiterkomme, und zwar wenn ich es jetzt so mache wie du vorgeschlagen hast, dann komme ich auf das:
[mm] $P(X_{m+n} [/mm] = s [mm] \mid X_1 [/mm] = [mm] x_1, \dots, X_m [/mm] = [mm] x_m) [/mm] = [mm] P(X_{m+n} [/mm] = s [mm] \mid \cup_{k \in S} X_0 [/mm] = k, [mm] \dots, X_m [/mm] = [mm] x_m) [/mm] = [mm] \dots [/mm] = [mm] \sum_{k \in S} P(X_{m+n} [/mm] = s [mm] \mid X_0 [/mm] = k, [mm] \dots, X_m=x_m) [/mm] = [mm] \sum_{k \in S} P(X_{m+n} [/mm] = s [mm] \mid X_m=x_m)$
[/mm]
wie kriege ich die Summe denn da raus?
|
|
|
|
|
Hiho,
> Hi
>
> sorry ich muss nochmal nachfragen weil ich jetzt wieder
> nicht weiterkomme, und zwar wenn ich es jetzt so mache wie
> du vorgeschlagen hast, dann komme ich auf das:
>
> [mm]P(X_{m+n} = s \mid X_1 = x_1, \dots, X_m = x_m) = P(X_{m+n} = s \mid \cup_{k \in S} X_0 = k, \dots, X_m = x_m) = \dots = \sum_{k \in S} P(X_{m+n} = s \mid X_0 = k, \dots, X_m=x_m) = \sum_{k \in S} P(X_{m+n} = s \mid X_m=x_m)[/mm]
>
> wie kriege ich die Summe denn da raus?
Da hast du dich verrechnet.
Der letzte Summand enthält ja gar kein $k$ mehr und damit wäre [mm] $\sum_{k \in S} P(X_{m+n} [/mm] = s [mm] \mid X_m=x_m) [/mm] = |S| [mm] \cdot P(X_{m+n} [/mm] = s [mm] \mid X_m=x_m) [/mm] $ und das wäre bestimmt nicht immer kleinergleich 1 für beliebige Wahlen von S.
Deine Gleichheit stimmt übrigens auch gar nicht… du kannst doch die Bedingung nicht disjunkt zerlegen und dann die Summe anwenden!
D.h. es ist doch $P(A | [mm] B_1 \cup B_2) \not= P(A|B_1) [/mm] + [mm] P(A|B_2)$ [/mm] für disjunkte [mm] $B_1,B_2$
[/mm]
Was aber gilt, ist:
[mm] $P(B_1 \cup B_2|A) [/mm] = [mm] P(B_1|A) [/mm] + [mm] P(B_2|A)$
[/mm]
D.h. es gilt:
[mm] $P(X_{m+n} [/mm] = s [mm] \mid X_1 [/mm] = [mm] x_1, \dots, X_m [/mm] = [mm] x_m) [/mm] = [mm] \sum_{k\in S} P(X_{m+n} [/mm] = s, [mm] X_0 [/mm] = [mm] k\mid X_1 [/mm] = [mm] x_1, \dots, X_m [/mm] = [mm] x_m) [/mm] = [mm] \sum_{k\in S} P(X_{m+n} [/mm] = s [mm] \mid X_0 [/mm] = k, [mm] X_1 [/mm] = [mm] x_1, \dots, X_m [/mm] = [mm] x_m) \frac{P(X_{m+n} = s, X_0 = k, X_1 = x_1, \dots, X_m = x_m)}{P(X_{m+n} = s , X_1 = x_1, \dots, X_m = x_m)}$ [/mm] (rechne das nach durch einfaches Anwenden der Definition der bedingten Wahrscheinlichkeit!)
Nach (3) gilt nun: [mm] $P(X_{m+n} [/mm] = s [mm] \mid X_0 [/mm] = k, [mm] X_1 [/mm] = [mm] x_1, \dots, X_m [/mm] = [mm] x_m) [/mm] = [mm] P(X_{m+n} [/mm] = s [mm] \mid X_m=x_m)$ [/mm]
und wir erhalten:
$= [mm] P(X_{m+n} [/mm] = s [mm] \mid X_m=x_m) \sum_{k\in S} \frac{P(X_{m+n} = s, X_0 = k, X_1 = x_1, \dots, X_m = x_m)}{P(X_{m+n} = s , X_1 = x_1, \dots, X_m = x_m)} [/mm] = [mm] P(X_{m+n} [/mm] = s [mm] \mid X_m=x_m) \frac{P(X_{m+n} = s, X_1 = x_1, \dots, X_m = x_m)}{P(X_{m+n} = s , X_1 = x_1, \dots, X_m = x_m)} [/mm] = [mm] P(X_{m+n} [/mm] = s [mm] \mid X_m=x_m)$
[/mm]
Gruß,
Gono
|
|
|
|