www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Majorantenkriterium
Majorantenkriterium < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Majorantenkriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:55 Di 11.05.2010
Autor: AbraxasRishi

Hallo!

Beim Majorantenkriterium wird ja gefordert, dass alle Glieder der Majorante nichtnegativ sind. Ich sehe aber nciht, dass im Beweis explizit davon Gebrauch gemacht wird. Wozu braucht es die Voraussetzung dann? Es genügt ja[mm] |a_k|\le c_k [/mm] fast immer

Ab einem Index m ist:

[mm]\summe_{k=m}^n|a_k|\le\summe_{k=m}^nc_k\le\summe_{k=m}^\infty c_k [/mm]

Womit die Konvergenz von [mm]\summe_{k=m}^\infty |a_k| [/mm]gezeigt ist. Da es aber bei der Konvergenz auf ein endliches Anfangsstück nicht ankommt konvergiert auch [mm]\summe_{k=0}^\infty |a_k| [/mm]

Was hab ich da falsch verstanden?

Danke im Voraus!

Angelika

        
Bezug
Majorantenkriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 08:27 Di 11.05.2010
Autor: angela.h.b.


> Hallo!
>  
> Beim Majorantenkriterium wird ja gefordert, dass alle
> Glieder der Majorante nichtnegativ sind. Ich sehe aber
> nciht, dass im Beweis explizit davon Gebrauch gemacht wird.
> Wozu braucht es die Voraussetzung dann? Es genügt ja[mm] |a_k|\le c_k[/mm]
> fast immer

Hallo,

ja, das genügt.
Das Majorantenkriterium wird ja auch oftmals so formuliert.


Wenn man das Kriterium zunächst  mit " [mm] |a_k|\le c_k [/mm] immer" formuliert und beweist, verliert man allerdings auch nichts, denn man kann es ja trotzdem für den "fast immer"-Fall verwenden, indem man zunächst eine endliche Summe abtrennt (konvergiert auf jeden Fall) und für das "hintere Stück" dann das "immer"-Majorantenkriterium verwendet.

>  
> Ab einem Index m ist:
>  
> [mm]\summe_{k=m}^n|a_k|\le\summe_{k=m}^nc_k\le\summe_{k=m}^\infty c_k[/mm]
>  
> Womit die Konvergenz von [mm]\summe_{k=m}^\infty |a_k| [/mm]gezeigt
> ist. Da es aber bei der Konvergenz auf ein endliches
> Anfangsstück nicht ankommt konvergiert auch
> [mm]\summe_{k=0}^\infty |a_k|[/mm]
>  
> Was hab ich da falsch verstanden?

Ich glaub', daß Du nichts falsch verstanden hast,
und ich hoffe, daß ich auf das geantwortet habe, was Du wissen wolltest.

Gruß v. Angela


Bezug
                
Bezug
Majorantenkriterium: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:44 Di 11.05.2010
Autor: AbraxasRishi

Ja, danke, genau das wollte ich wissen.

Bezug
        
Bezug
Majorantenkriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 09:56 Di 11.05.2010
Autor: fred97


> Hallo!
>  
> Beim Majorantenkriterium wird ja gefordert, dass alle
> Glieder der Majorante nichtnegativ sind. Ich sehe aber
> nciht, dass im Beweis explizit davon Gebrauch gemacht wird.
> Wozu braucht es die Voraussetzung dann? Es genügt ja[mm] |a_k|\le c_k[/mm]
> fast immer

Ist dann [mm] \summe_{k=1}^\infty c_k [/mm] konvergent, so konvergiert [mm] \summe_{k=1}^\infty a_k [/mm] absolut

FRED






>  
> Ab einem Index m ist:
>  
> [mm]\summe_{k=m}^n|a_k|\le\summe_{k=m}^nc_k\le\summe_{k=m}^\infty c_k[/mm]
>  
> Womit die Konvergenz von [mm]\summe_{k=m}^\infty |a_k| [/mm]gezeigt
> ist. Da es aber bei der Konvergenz auf ein endliches
> Anfangsstück nicht ankommt konvergiert auch
> [mm]\summe_{k=0}^\infty |a_k|[/mm]
>  
> Was hab ich da falsch verstanden?
>  
> Danke im Voraus!
>  
> Angelika


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]