www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Mac Laurinsche Reihe
Mac Laurinsche Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mac Laurinsche Reihe: Idee zum Konvergenzbereich
Status: (Frage) beantwortet Status 
Datum: 15:24 Fr 10.09.2010
Autor: monstre123

Aufgabe
Entwickeln Sie die Funktion [mm] f(x)=ln(\bruch{1+x}{1-x}) [/mm] in eine Mac Laurinsche Reihe bis zur 5.Potenz.  

Hallo,

ich habe nur eine Frage und zwar wie ich den Kovergenzbereich bestimmen kann?

Erstmal die Potenzreihe von f(x):

[mm] f(x)=ln(\bruch{1+x}{1-x})=2x+\bruch{2}{3}x^{3}+\bruch{2}{5}x^{5}+...=2(\bruch{x}{1}+\bruch{x^{3}}{3}+\bruch{x^{5}}{5}+...) [/mm]

allgemein die Potenzreihe: [mm] \summe_{n=0}^{\infty}\bruch{x^{2n+1}}{2n+1}=\summe_{n=0}^{\infty}\bruch{1}{2n+1}x^{2n+1} [/mm]

Für den Konvergenzbereich braucht man doch zunächst den Konvergenzradius:

[mm] a_{n}=\bruch{1}{2n+1} [/mm]  ,  [mm] a_{n+1}=\bruch{1}{2(n+1)+1}=\bruch{1}{2n+3} [/mm]

[mm] R=\limes_{n\rightarrow\infty}|\bruch{a_{n}}{a_{n+1}}|=\limes_{n\rightarrow\infty}|\bruch{\bruch{1}{2n+1}}{\bruch{1}{2n+3}}|=\limes_{n\rightarrow\infty}|\bruch{2n+3}{2n+1}|=1 [/mm]

Was muss ich weiter tun, um den Konvergenzbereich zu bestimmen, falls das bisher überhaupt richtig war?

Danke vorab.

        
Bezug
Mac Laurinsche Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:43 Fr 10.09.2010
Autor: schachuzipus

Hallo monstre123,

> Entwickeln Sie die Funktion [mm]f(x)=ln(\bruch{1+x}{1-x})[/mm] in
> eine Mac Laurinsche Reihe bis zur 5.Potenz.
> Hallo,
>
> ich habe nur eine Frage und zwar wie ich den
> Kovergenzbereich bestimmen kann?
>
> Erstmal die Potenzreihe von f(x):
>
> [mm]f(x)=ln(\bruch{1+x}{1-x})=2x+\bruch{2}{3}x^{3}+\bruch{2}{5}x^{5}+...=2(\bruch{x}{1}+\bruch{x^{3}}{3}+\bruch{x^{5}}{5}+...)[/mm]
>
> allgemein die Potenzreihe:
> [mm]\summe_{n=0}^{\infty}\bruch{x^{2n+1}}{2n+1}=\summe_{n=0}^{\infty}\bruch{1}{2n+1}x^{2n+1}[/mm]

Hier fehlt jeweils der Faktor 2!

Richtig: [mm]\sum\limits_{n=0}^{\infty}\frac{2}{2n+1}\cdot{}x^{2n+1}[/mm]

>
> Für den Konvergenzbereich braucht man doch zunächst den
> Konvergenzradius:
>
> [mm]a_{n}=\bruch{1}{2n+1}[/mm] ,
> [mm]a_{n+1}=\bruch{1}{2(n+1)+1}=\bruch{1}{2n+3}[/mm]
>
> [mm]R=\limes_{n\rightarrow\infty}|\bruch{a_{n}}{a_{n+1}}|=\limes_{n\rightarrow\infty}|\bruch{\bruch{1}{2n+1}}{\bruch{1}{2n+3}}|=\limes_{n\rightarrow\infty}|\bruch{2n+3}{2n+1}|=1[/mm]

Das stimmt! (Der fehlende Faktor 2 kürzt sich ja weg)

Allerdings ist hier dieses QK mit Vorsicht zu genießen, wenn [mm]a_n\neq 0[/mm] ist, so ist doch [mm]a_{n+1}=0[/mm] (bei ungeradem n) oder andersherum.

Und Division durch 0 ist keine gute Idee!

Nichtsdestotrotz ist 1 der Konvergenzradius!

Berechne ihn besser mit Cauchy-Hadamard.

>
> Was muss ich weiter tun, um den Konvergenzbereich zu
> bestimmen, falls das bisher überhaupt richtig war?

Schreibe die Reihe als [mm]x\cdot{}\sum\limits_{n=0}^{\infty}\frac{2}{2n+1}\cdot{}\left(x^2\right)^n[/mm]

Dann hast du mit der obigen Rechnung Konvergenz für [mm]\left|x^2\right|=|x|^2<1[/mm], also für [mm]|x|<1[/mm]


Wenn du übrigend die Logarithmusreihe für [mm]\ln(1+x)[/mm] kennst, kannst du dir viel Rechnerei ersparen, wenn du bedenkst, dass [mm]\ln\left(\frac{1+x}{1-x}\right)=\ln(1+x)-\ln(1-x)[/mm] ist.

So habe ich die Formel für die Reihe hergeleitet (bzw. kontrolliert)


>
> Danke vorab.

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]