www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Lösung einer Gleichung
Lösung einer Gleichung < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung einer Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:37 Di 27.01.2009
Autor: guffel

Hallo,

ich komme grad bei einem Beweis nicht weiter:

Seien x,y und a gegeben  Sei [mm] [/mm] =x ,  [mm] [/mm] =y, [mm] [/mm] =a die b-adischen Darstellungen der Zahlen zur Basis m. Sei a fest und [mm] x_{0} \not= y_{0}. [/mm] Gesucht ist die Lösung folgender Gleichung:

[mm] (a_{0} *(x_{0} [/mm] - [mm] y_{0}) [/mm] ) mod m = [mm] (-\summe_{i=1}^{r-1}(a_{i} *(x_{i} [/mm] - [mm] y_{i}) [/mm] ) mod m  

In unserem Skript steht nun, dass diese Gleichung für genau ein [mm] a_{0} [/mm] lösbar ist, wenn m eine Primzahl ist. Sieht jemand, warum das so ist?  Im Skript steht nur die Bermerkung, dass [mm] \IZ_{m} [/mm] ein Körper ist und somit eine eindeutige Inverse zu [mm] x_{0} [/mm] - [mm] y_{0} [/mm] existiert. Allerdings hilft mir das nicht weiter.

Grüsse Guffel

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lösung einer Gleichung: Klärungsbedarf
Status: (Antwort) fertig Status 
Datum: 08:23 Mi 28.01.2009
Autor: statler

Guten Morgen!

> ich komme grad bei einem Beweis nicht weiter:
>  
> Seien x,y und a gegeben  Sei [mm][/mm] =x ,  
> [mm][/mm] =y, [mm][/mm] =a die b-adischen
> Darstellungen der Zahlen zur Basis m. Sei a fest und [mm]x_{0} \not= y_{0}.[/mm]
> Gesucht ist die Lösung folgender Gleichung:
>  
> [mm](a_{0} *(x_{0}[/mm] - [mm]y_{0})[/mm] ) mod m =
> [mm](-\summe_{i=1}^{r-1}(a_{i} *(x_{i}[/mm] - [mm]y_{i})[/mm] ) mod m  
>
> In unserem Skript steht nun, dass diese Gleichung für genau
> ein [mm]a_{0}[/mm] lösbar ist, wenn m eine Primzahl ist. Sieht
> jemand, warum das so ist?  Im Skript steht nur die
> Bermerkung, dass [mm]\IZ_{m}[/mm] ein Körper ist und somit eine
> eindeutige Inverse zu [mm]x_{0}[/mm] - [mm]y_{0}[/mm] existiert.

Wenn ich deinen Text so nehme, wie er dasteht (und das pflegen Mathematiker in 1. Näherung zu tun), dann sind a, x und y gegeben. Dann ist die Gleichung bzw. Kongruenz, die du hingeschrieben hast, wahr oder falsch, je nachdem.

Mich irritiert auch, daß die Basis der b-adischen Darstellung m heißt. Ist das nicht so, daß die Basis der b-adischen Darst. b ist?

Aus welcher Menge sind a, x und y überhaupt? Und was ist vorgegeben, und was wird nun gesucht?

Guß aus HH-Harburg
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]