Lösung der Gleichung "true"? < Derive < Mathe-Software < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:42 Fr 10.11.2006 | Autor: | mab |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo,
habe ein Problem mit Derive. Und zwar gibt er mir auf den Befehl (bitte Quelltext anschauen, möchte das nicht alles ins Formel-Format umschreiben)
SOLVE((v - [mm] u)·(a^2·(e·(i [/mm] - l) + f·(k - h) + h·l - i·k) - 2·a·m·(e·(i - l) + f·(k - h) + h·l - i·k) + [mm] b^2·(e·(i [/mm] - l) + f·(k - h) + h·l - i·k) - [mm] b·(d^2·(i [/mm] - l) + 2·d·m·(l - i) + [mm] e^2·(i [/mm] - l) + [mm] f^2·(i [/mm] - l) - [mm] f·(g^2 [/mm] - 2·g·m + [mm] h^2 [/mm] + [mm] i^2 [/mm] - [mm] j^2 [/mm] + 2·j·m - [mm] k^2 [/mm] - [mm] l^2 [/mm] + (u - w)·(v - w)) + [mm] g^2·l [/mm] - 2·g·l·m + [mm] h^2·l [/mm] + i·(i·l - [mm] j^2 [/mm] + 2·j·m - [mm] k^2 [/mm] - [mm] l^2 [/mm] + (u - w)·(v - w))) + [mm] c^2·(e·(i [/mm] - l) + f·(k - h) + h·l - i·k) + [mm] c·(d^2·(h [/mm] - k) + 2·d·m·(k - h) + [mm] e^2·(h [/mm] - k) - [mm] e·(g^2 [/mm] - 2·g·m + [mm] h^2 [/mm] + [mm] i^2 [/mm] - [mm] j^2 [/mm] + 2·j·m - [mm] k^2 [/mm] - [mm] l^2 [/mm] + (u - w)·(v - w)) + [mm] f^2·(h [/mm] - k) + [mm] g^2·k [/mm] - 2·g·k·m + [mm] h^2·k [/mm] - [mm] h·(j^2 [/mm] - 2·j·m + [mm] k^2 [/mm] + [mm] l^2 [/mm] + (u - w)·(w - v)) + [mm] i^2·k) [/mm] + [mm] d^2·(i·k [/mm] - h·l) + 2·d·m·(h·l - i·k) + [mm] e^2·(i·k [/mm] - h·l) + [mm] e·(g^2·l [/mm] - 2·g·l·m + [mm] h^2·l [/mm] + [mm] i^2·l [/mm] - [mm] i·(j^2 [/mm] - 2·j·m + [mm] k^2 [/mm] + [mm] l^2 [/mm] + w·(u + v - w)) + l·u·v) + [mm] f^2·(i·k [/mm] - h·l) - [mm] f·(g^2·k [/mm] - 2·g·k·m + [mm] h^2·k [/mm] - [mm] h·(j^2 [/mm] - 2·j·m + [mm] k^2 [/mm] + [mm] l^2 [/mm] + w·(u + v - w)) + [mm] k·(i^2 [/mm] + u·v)) - u·v·(h·l - i·k))/(b·(f·(v - w) + i·(w - u) + l·(u - v)) - c·(e·(v - w) + h·(w - u) + k·(u - v)) + e·(l·v - i·w) + f·(h·w - k·v) - u·(h·l - i·k)) = (v - [mm] u)·(a^2·(e·(i [/mm] - l) + f·(k - h) + h·l - i·k) - 2·a·m·(e·(i - l) + f·(k - h) + h·l - i·k) + [mm] b^2·(e·(i [/mm] - l) + f·(k - h) + h·l - i·k) - [mm] b·(d^2·(i [/mm] - l) + 2·d·m·(l - i) + [mm] e^2·(i [/mm] - l) + [mm] f^2·(i [/mm] - l) - [mm] f·(g^2 [/mm] - 2·g·m + [mm] h^2 [/mm] + [mm] i^2 [/mm] - [mm] j^2 [/mm] + 2·j·m - [mm] k^2 [/mm] - [mm] l^2 [/mm] + (u - w)·(v - w)) + [mm] g^2·l [/mm] - 2·g·l·m + [mm] h^2·l [/mm] + i·(i·l - [mm] j^2 [/mm] + 2·j·m - [mm] k^2 [/mm] - [mm] l^2 [/mm] + (u - w)·(v - w))) + [mm] c^2·(e·(i [/mm] - l) + f·(k - h) + h·l - i·k) + [mm] c·(d^2·(h [/mm] - k) + 2·d·m·(k - h) + [mm] e^2·(h [/mm] - k) - [mm] e·(g^2 [/mm] - 2·g·m + [mm] h^2 [/mm] + [mm] i^2 [/mm] - [mm] j^2 [/mm] + 2·j·m - [mm] k^2 [/mm] - [mm] l^2 [/mm] + (u - w)·(v - w)) + [mm] f^2·(h [/mm] - k) + [mm] g^2·k [/mm] - 2·g·k·m + [mm] h^2·k [/mm] - [mm] h·(j^2 [/mm] - 2·j·m + [mm] k^2 [/mm] + [mm] l^2 [/mm] + (u - w)·(w - v)) + [mm] i^2·k) [/mm] + [mm] d^2·(i·k [/mm] - h·l) + 2·d·m·(h·l - i·k) + [mm] e^2·(i·k [/mm] - h·l) + [mm] e·(g^2·l [/mm] - 2·g·l·m + [mm] h^2·l [/mm] + [mm] i^2·l [/mm] - [mm] i·(j^2 [/mm] - 2·j·m + [mm] k^2 [/mm] + [mm] l^2 [/mm] + w·(u + v - w)) + l·u·v) + [mm] f^2·(i·k [/mm] - h·l) - [mm] f·(g^2·k [/mm] - 2·g·k·m + [mm] h^2·k [/mm] - [mm] h·(j^2 [/mm] - 2·j·m + [mm] k^2 [/mm] + [mm] l^2 [/mm] + w·(u + v - w)) + [mm] k·(i^2 [/mm] + u·v)) - u·v·(h·l - i·k))/(b·(f·(v - w) + i·(w - u) + l·(u - v)) - c·(e·(v - w) + h·(w - u) + k·(u - v)) + e·(l·v - i·w) + f·(h·w - k·v) - u·(h·l - i·k)), m, Real)
nur "true" aus. Wollte aber nach m auflösen. Was ist das Problem?
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:27 Fr 10.11.2006 | Autor: | Lueger |
Hallo
Bedeutet das nicht, dass beide Seiten nach entsprechnenden Umformungen gleich sind.?!
Wenn man a*b*c=a*b*c eingibt und nach einer Variablen auflösen lässt, dann spuckt Derive auch "TRUE" aus.
Viell. hifts weiter....
Grüße
Lueger
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:41 Fr 10.11.2006 | Autor: | mab |
Ahem ^^
Das hab ich nach Ausdrucken bei dem Versuch, es von Hand zu lösen, auch nach ca. 2 Minuten gemerkt...
Komisch eigentlich, ich rechen mich nochmal bis dahin durch, vll hab ich irgendwo vorher nen Fehler reingebracht.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:08 Fr 10.11.2006 | Autor: | Lueger |
Ich setzte die Frage mal auf beantwortet.
Nette Rechnung...
Was ist das eignetlich ????? (nur so aus neugierde)
|
|
|
|