Lösen eines LGS < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:19 So 27.01.2008 | Autor: | haddi |
Hallo, durch anwendung des lagrange-ansatzes bin ich auf folgendes LGS gekommen:
[mm] Lx1=2x1+2x2-1,5\lambda=0
[/mm]
Lx2= [mm] 2x2+3\lambda=0
[/mm]
[mm] L\lambda=-1,5x1+3x2+6=0
[/mm]
Wie löse ich dieses LGS??
Da sind doch alle Lösungen 0, wenn ich das gaußsche Eliminationsverfahren anwende oder?
Bitte um Hilfe mit dem ersten schritt!
Wäre wirklich sehr nett!
Mit freundlichen Grüßen
Haddi
|
|
|
|
Hi haddi,
> [mm]Lx1=2x1+2x2-1,5\lambda=0[/mm]
> Lx2= [mm]2x2+3\lambda=0[/mm]
> [mm]L\lambda=-1,5x1+3x2+6=0[/mm]
> Wie löse ich dieses LGS?? Da sind doch alle Lösungen 0,
> wenn ich das gaußsche Eliminationsverfahren anwende oder?
> Bitte um Hilfe mit dem ersten schritt!
Du hast nun nach dem Langrange-Ansatz die drei partiellen Ableitungen (nach $ [mm] x_{1}, x_{2} [/mm] $ und [mm] \lambda) [/mm] gebildet und gleich Null gesetzt. Nun kannst du [mm] \lambda [/mm] durch Einsetzen eliminieren. Dies geht zum Beispiel, indem du $ [mm] Lx_{1} [/mm] $ nach [mm] \lambda [/mm] auflöst und dann in $ [mm] Lx_{2} [/mm] $ einsetzt. Somit hast du kein [mm] \lambda [/mm] mehr und nur noch die zwei Variablen $ [mm] x_{1} [/mm] $ und $ [mm] x_{2} [/mm] $. Nun kannst du ganz "normal" die Gleichungen auflösen und das Gleichungssystem lösen. Beachte dabei, das du [mm] \lambda [/mm] noch errechnen musst, da es zur Lösung des Gleichungssystems dazu gehört.
Liebe Grüße
Analytiker
|
|
|
|