www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Ljapunov
Ljapunov < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ljapunov: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:20 So 06.12.2009
Autor: moerni

Hallo. Ich soll eine nichtlineare DGL untersuchen: y'(t)=sin(y(t)). Mithilfe des Ljapunov - Funktionals soll ich zeigen, dass die Lösung [mm] y=\pi [/mm] stabil ist mithilfe der Lösungsdarstellung soll ich zeigen, dass die Lösung y=0 nicht stabil ist.
Ich komme dabei nicht weiter... Wir hatten in der Vorlesung einen Satz: sei [mm] x^0=0 [/mm] ein isolierter singulärer Punkt von f. Falls eine Lyapunov Funktion zur autonomen Dgl x'=f(x) existiert, so ist y=0 stabil. Hier gehts aber ja nicht um y=0, sondern [mm] y=\pi. [/mm] Da kann ich diesen Satz wohl nicht anwenden, oder? Was soll ich mit der Lyapunov-Funktion anfangen?
Über eine hilfreiche Antwort wäre ich sehr dankbar.
moerni

        
Bezug
Ljapunov: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Di 08.12.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]