www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Navigation
 Startseite...
 Suchen
 Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Linearkombination von Vektoren
Linearkombination von Vektoren < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linearkombination von Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:37 Fr 16.12.2016
Autor: Otto1998

Aufgabe
Bestimmen sie diejenigen reellen Zahlen für den Parameter a, für die der jeweils letzte Vektor eine Linearkombination der vorherigen Vektoren ist.

[mm] \vektor{1 \\ 1 \\ a}, \vektor{1 \\ a \\-1}, \vektor{2a \\ 2 \\-1} [/mm]

Guten Tag,
Ich bin mir nicht sicher, wie ich weiter vorgehen muss, bis jetzt habe ich das Gleichungssystem aufgestellt.

r + s = 2a
r + a = 2
a - s = -1

Jetzt weiß ich nicht wie ich auf den a Wert kommen soll.
In der Schule sind wir auf einmal auf

r = (2a-1) / (1+ a)
s = (2 - (2a-1)/1+a))/a gekommen und somit auf a = 1.
Allesdings war keine Zeit mehr um nachzufragen und trotzdem interessiert mich der Lösungsweg.

Schon mal danke für eure Hilfen !!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Linearkombination von Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 Fr 16.12.2016
Autor: fred97


>  
> Bestimmen sie diejenigen reellen Zahlen für den Parameter
> a, für die der jeweils letzte Vektor eine
> Linearkombination der vorherigen Vektoren ist.
>  
> [mm]\vektor{1 \\ 1 \\ a}, \vektor{1 \\ a \\-1}, \vektor{2a \\ 2 \\-1}[/mm]
>  
> Guten Tag,
>  Ich bin mir nicht sicher, wie ich weiter vorgehen muss,
> bis jetzt habe ich das Gleichungssystem aufgestellt.
>  
> r + s = 2a
>  r + a = 2

das stimmt nicht. richtig: r+sa=2


>  a - s = -1

das ist auch falsch. richtig: ra-s=-1



>  
> Jetzt weiß ich nicht wie ich auf den a Wert kommen soll.
>  In der Schule sind wir auf einmal auf
>
> r = (2a-1) / (1+ a)
> s = (2 - (2a-1)/1+a))/a gekommen und somit auf a = 1.
>  Allesdings war keine Zeit mehr um nachzufragen und
> trotzdem interessiert mich der Lösungsweg.
>  
> Schon mal danke für eure Hilfen !!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
        
Bezug
Linearkombination von Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:13 Fr 16.12.2016
Autor: angela.h.b.


> Bestimmen sie diejenigen reellen Zahlen für den Parameter
> a, für die der jeweils letzte Vektor eine
> Linearkombination der vorherigen Vektoren ist.

>

> [mm]\vektor{1 \\ 1 \\ a}, \vektor{1 \\ a \\-1}, \vektor{2a \\ 2 \\-1}[/mm]

Hallo,

[willkommenmr].

Du sollst also reelle Zahlen r und s finden, so daß

[mm] r\vektor{1 \\ 1 \\ a}+s\vektor{1 \\ a \\-1}=\vektor{2a \\ 2 \\-1} [/mm]

<==>

[mm] \vektor{r \\ r \\ ra}+s\vektor{s \\ sa \\-s}=\vektor{2a \\ 2 \\-1}, [/mm]

woraus sich das Gleichungssystem, welches Dir Fred nannte, ergibt:

r+s=2a
r+sa=2
ra-s=-1

Dieses ist nun zu lösen. Deine Variablen sind s und r,
das a behandle so, als stünde dort irgendeine Zahl.

Du kannst z.B. zuerst die erste Gleichung nach r auflösen.
Setze dieses r in die zweite Gleicung ein und rechne s aus.

Diesen Wert wieder in die Gleichung r=... einsetzen,

und am Ende testest Du durc einsetzen, ob Dein r und s die dritte Gleicung auch lösen.

LG Angela








>

> Guten Tag,
> Ich bin mir nicht sicher, wie ich weiter vorgehen muss,
> bis jetzt habe ich das Gleichungssystem aufgestellt.

>

> r + s = 2a
> r + a = 2
> a - s = -1

>

> Jetzt weiß ich nicht wie ich auf den a Wert kommen soll.
> In der Schule sind wir auf einmal auf

>

> r = (2a-1) / (1+ a)
> s = (2 - (2a-1)/1+a))/a gekommen und somit auf a = 1.
> Allesdings war keine Zeit mehr um nachzufragen und
> trotzdem interessiert mich der Lösungsweg.

>

> Schon mal danke für eure Hilfen !!

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

>

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]