Linearformen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:23 Do 13.05.2010 | Autor: | wieschoo |
Aufgabe | Zeigen Sie, dass zu jedem Vektor [mm] $0\neq [/mm] v [mm] \in [/mm] V$ eine Linearform [mm] $\lambda \in V^{\star}$ [/mm] mit [mm] $\lambda (v)\neq [/mm] 0$ existiert. |
Ich weiß noch nicht so recht wie ich an die Sache heran gehen soll.
Mein Anfang wäre. Sei V ein endl.-dim. K-Vektorraum mit Basis [mm] $b_1,\ldots,b_n$. [/mm] Sei
[mm] $0\neq [/mm] v = [mm] \summe_{i=1}^{n} a_i b_i$ [/mm] mit [mm] $a_i \in [/mm] K$
Dann existiert eine duale Basis [mm] $\beta _1,\ldots,\beta [/mm] _n$ mit [mm] $\beta [/mm] _i [mm] (b_j) =\delta_{ij}$
[/mm]
Sei [mm] $\lambda \in V^{\star}$ [/mm] also [mm] $\lambda [/mm] = [mm] \summe_{i=1}^{n} \lambda (b_i) \beta_i$
[/mm]
Jetzt weiß ich allerdings nicht, wie ich mein $v$ einsetzen kann?
Meine zweite Idee wäre das [mm] $0\neq [/mm] v$ zu nehmen und mit [mm] $b_2,\ldots,b_n$ [/mm] zu einer Basis von V zu ergänzen, dann habe ich wenigsten direkt mein $v$
Meine dritte Idee wäre Genau das Gegenteil zu behaupten, also
[mm] $\exists 0\neq [/mm] v [mm] \in [/mm] V [mm] \forall \lambda \in V^{\star} [/mm] : [mm] \lambda(v)=0$
[/mm]
Allerdings komme ich nirgends direkt weiter.
Wäre toll wenn ich einen Fifty-Fifty-Joker hätte. Oder sogar einen anderen Ansatz.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:10 Do 13.05.2010 | Autor: | SEcki |
> Mein Anfang wäre. Sei V ein endl.-dim. K-Vektorraum mit
Sollst du das für beliebige Vektorräume zeigen?
> Basis [mm]b_1,\ldots,b_n[/mm]. Sei
> [mm]0\neq v = \summe_{i=1}^{n} a_i b_i[/mm] mit [mm]a_i \in K[/mm]
> Dann
> existiert eine duale Basis [mm]\beta _1,\ldots,\beta _n[/mm] mit
> [mm]\beta _i (b_j) =\delta_{ij}[/mm]
> Sei [mm]\lambda \in V^{\star}[/mm] also
> [mm]\lambda = \summe_{i=1}^{n} \lambda (b_i) \beta_i[/mm]
>
> Jetzt weiß ich allerdings nicht, wie ich mein [mm]v[/mm] einsetzen
> kann?
Einsetzen und auswerten? In dem Fall hast du ja ein Funktional gefunden.
> Meine zweite Idee wäre das [mm]0\neq v[/mm] zu nehmen und mit
> [mm]b_2,\ldots,b_n[/mm] zu einer Basis von V zu ergänzen, dann habe
> ich wenigsten direkt mein [mm]v[/mm]
Ja, dann kannst du eine lineare Abbildung dadurch ebstimmen, dass du sagst, was es auf der Basis macht. Fertig.
> Allerdings komme ich nirgends direkt weiter.
> Wäre toll wenn ich einen Fifty-Fifty-Joker hätte. Oder
> sogar einen anderen Ansatz.
Internet-Joker genutzt. Puh, was machst du jetzt?
SEcki
|
|
|
|
|
> > Sollst du das für beliebige Vektorräume zeigen?
Zumindest für endlich-dim K-Vr.
Also dann fang ich an mit:
Sei V ein endl.-dim. K-Vektorraum. Sei [m]0\neq v\in V[/m]. Daher kann man das [m]v[/m] mit [m] b_2,\ldots,b_n [/m] zu einer Basis von V ergänzen. Die dazu duale Basis ist [m] \beta _1,\ldots,\beta_n [/m] mit [m] \beta _i (b_j) =\delta_{ij} [/m]. Schreibe mein [m]\lambda \in V^{\star}[/m] als [m]\lambda =$\summe_{i=1}^{n} \lambda(b_i) \beta_i(b_j)=\summe_{i=1}^{n} \lambda(b_i) \delta_{ij}[/m] für [mm] $j=1,\ldots,n$ [/mm] also [m]\lambda =\lambda(b_j)[/m] für [mm] $j=1,\ldots,n$. [/mm] Damit also auch [m]\lambda =\lambda(v)[/m] ???
Mein anderer Ansatz wäre:
Sei [m]0\neq v\in V[/m], d.h. Sei [mm] b_i [/mm] $i=1,..,n$ eine Basis von V mit
[m]0\neq v = \summe_{j=1}^{n} a_j b_j [/m] Wobei [mm] $a_i \in [/mm] K$ Damit sind nicht alle [mm] $a_i [/mm] = 0$. Also existiert ein [mm] $a_k \neq [/mm] 0$. Schreibe
[m]v= \beta_1(v) b_1 + \ldots \beta_n(v) b_n[/m]
Es gilt [m]\beta_i(v) = \summe_{j=1}^{n} \lambda_j \beta_i(b_j)=\summe_{j=1}^{n}\lambda_j \delta_{ij}=a_i[/m]
An der Stelle k ist [mm] $a_k \neq [/mm] 0$ also auch [mm] $\beta_k(v) \neq [/mm] 0$. Damit ist mein [mm] $\beta_k$ [/mm] das [mm] $\lambda(v) \neq [/mm] 0$
Würde das so gehen.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:20 Sa 15.05.2010 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|