Linear beschränkte Fkt. < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
hallo,
ich hab ne frage zur aufgabe:
ist die funktion auf R x [mm] R^2 [/mm] mit y=(y1, y2) linear beschränkt?
[mm] f(t,y)=t*\sqrt{|y1|}+sin(t)y2 [/mm]
meine idee:
ich muss zeigen, dass ||f(t,y)||=A(t)*||y||+B(t) ist.
dann hab ich [mm] ||f(t,y)||=||t*\sqrt{y1} +sin(t)y2||\leq ||t\sqrt{y1}||+||sin(t)y2||= t||\sqrt{y1}||+sin(t)||y2||
[/mm]
aber hier weiß ich nicht mehr weiter... kann mir jemand weiterhelfen??
danke
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:49 Mi 14.03.2012 | Autor: | cycore |
Hallo Sabrinchen101,
> [...]
> [mm]f(t,y)=t*\sqrt{|y1|}+sin(t)y2[/mm]
>
> meine idee:
> ich muss zeigen, dass ||f(t,y)||[mm]\leq[/mm](!)A(t)*||y||+B(t) ist.
> dann hab ich [mm]||f(t,y)||=||t*\sqrt{y1} +sin(t)y2||\leq ||t\sqrt{y1}||+||sin(t)y2||= t||\sqrt{y1}||+sin(t)||y2||[/mm]
>
> aber hier weiß ich nicht mehr weiter... kann mir jemand
> weiterhelfen??
Das sieht ja schonmal nicht schlecht aus. Setzt du hier die Standard-(=Euklidsche) Norm an? Jedenfalls solltest du zunächst um [mm]t[/mm], [mm]y_1[/mm] und [mm]sin(t)[/mm] Beträge setzen. Dann solltest du dich davon vergewissern, dass [mm]|sin(t)|\leq |t|[/mm] ist für alle [mm]t\in\IR[/mm]; kannst du das für eine weitere Abschätzung verwenden? Nun hast du noch das Problem, dass für gewisse [mm]y[/mm] weder [mm]\sqrt{|y_1|}\leq y_1^2[/mm] noch [mm]|y_2|\leq |y_2^2|[/mm] gilt, aber das Problem solltest du mit einem hinreichend großen (du kannst ihn konstant wählen) Korrekturterm [mm]B(t)[/mm] beheben. Wie groß musst du [mm]B(t)[/mm] wählen?
Ich denke damit sollte der Rest kein Problem sein.
Gruß cycore
|
|
|
|
|
danke für deine antwort!
stimmt das so?
[mm] =|t|*||\sqrt{|y1|}||+|sin(t)|*||y2|| \leq 2*|t|*||\sqrt{|y1|}||+B(t)
[/mm]
mit [mm] B(t):=max{(\sqrt{|y1|},y2 )}
[/mm]
das mit dem korrekturterm stimmt glaub ich echt nicht??
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:28 Do 15.03.2012 | Autor: | cycore |
Hallo,
> danke für deine antwort!
> stimmt das so?
Leider nicht ganz, aber das bekommen wir hin.
> [mm]=|t|*||\sqrt{|y1|}||+|sin(t)|*||y2|| \leq 2*|t|*||\sqrt{|y1|}||+B(t)[/mm]
Wenn überall [mm]|sin(t)|\leq|t|[/mm] gilt, dann ist [mm]|sin(t)|\;\|y_2\|\leq|t|\;\|y_2\|[/mm] und du kannst nach dem Abschätzen [mm]|t|[/mm] ausklammern:
[mm]|t|*||\sqrt{|y1|}||+|sin(t)|*||y2|| \leq |t|(\sqrt{|y_1|}+|y_2|)[/mm] (Für reelle Zahlen ist es ja egal ob man [mm]|\cdot|\text{ oder }\|\cdot\|[/mm] schreibt...)
Nun ist [mm]\sqrt{|y_1|}+|y_2|\leq \sqrt{y_1^2+y_2^2} = \|y\|[/mm] leider nicht für alle [mm]\|y\|[/mm] erfüllt, aber es ist übrall [mm]|y_2|\leq\|y\|[/mm] und [mm]\sqrt{|y_1|}\leq\sqrt{y_1^2}\leq\|y\|[/mm] zumindest für alle [mm]y_1[/mm] mit [mm]|y_1| \geq 1[/mm].
Jetzt musst du dir nur noch überlegen, wie viel größer [mm]\sqrt{|y_1|} [/mm] als [mm]\sqrt{y_1^2} = |y_1|[/mm] sein kann für [mm]-1\leq y_1\leq 1[/mm]. Das kannst du wirklich in einem Maximum ausdrücken, genauer: [mm]\max_{-1\leq y_1\leq 1}{\sqrt{|y_1|}-|y_1|}[/mm], wobei du dir dann aber überlegen musst wieso das existiert; Oder du findest einen Wert, sagen wir c, für den man leicht zeigen kann, dass [mm]\sqrt{|y_1|}-\sqrt{y_1^2}\leq c[/mm] gilt für [mm]|y_1|<1[/mm].
Wichtig ist nämlich, dass [mm]B[/mm] nicht von [mm]y[/mm] abhängt!
Wenn du [mm]c[/mm] gefunden hast steht da also
[mm]\|f(t,y)\|=\dots\leq 2 |t|\;\|y\|+c|t|[/mm]
(tut mir leid ich hab mich geirrt man sollte B nur schwerlich konstant wählen können)
>
> mit [mm]B(t):=max{(\sqrt{|y1|},y2 )}[/mm]
> das mit dem korrekturterm
> stimmt glaub ich echt nicht??
Gruß cycore
|
|
|
|
|
okay...
kann man c=1 wählen?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:58 Do 15.03.2012 | Autor: | cycore |
Ja, der maximale Wert ist [mm]1/4[/mm], aber einfacher ist es wenn du [mm]\sqrt{2}[/mm] nimmst. So würde ich es machen:
Starte mit [mm](\sqrt{|y_1|}-|y_1|)^2[/mm] und schätze es [mm]\leq 2[/mm] ab, indem du
1. die binomische Formel ansetzt,
2. [mm]|y_1|^2\leq|y_1|[/mm] benutzt,
3. [mm]2 |y_1|[/mm] ausklammerst und
4. zu guter letzt alle Faktoren (allesamt nicht negativ für [mm]|y_1|<1[/mm]) ungleich [mm]2[/mm] kleiner gleich 1 abschätzt.
Letzten endes geht es hier schließlich nur um die Existenz und nicht um möglichst kleine Werte...
Gruß Ben
|
|
|
|
|
cool danke :) jetzt hab ichs geblickt :)
aber es gibt noch ne zweite teilaufgabe. ich habs mal versucht, aber ich brauch wieder den ein oder anderen tipp
[mm] f(t,y)=e^{-t^2*|y1|}+y1*(1+y2^2)^{-1} [/mm]
ich hab dann wieder
[mm] ||f(t,y)||=||e^{-t^2*|y1|}+y1*(1+y2^2)^{-1}||=||e^{-t^2*|y1|}+\frac{y1}{1+y2^2}|| \leq (|e^{-t^2}|)^{||y1||}+\frac{||y1||}{||1+y2^2||} [/mm]
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:56 Do 15.03.2012 | Autor: | cycore |
Hallo,
> [...] ich habs mal
> versucht, aber ich brauch wieder den ein oder anderen tipp
> [mm]f(t,y)=e^{-t^2*|y1|}+y1*(1+y2^2)^{-1}[/mm]
> ich hab dann wieder
>
> [mm]||f(t,y)||=||e^{-t^2*|y1|}+y1*(1+y2^2)^{-1}||=||e^{-t^2*|y1|}+\frac{y1}{1+y2^2}|| \leq (|e^{-t^2}|)^{||y1||}+\frac{||y1||}{||1+y2^2||}[/mm]
>
Drei Fakten die dir helfen sollten (wobei du dich natürlich noch von der Richtigkeit vergewissern solltest):
1. Wegen [mm]|1+y_2^2|\geq 1[/mm] ist stets [mm]\frac{|y_1|}{|1+y_2^2|}\leq |y_1| \leq\|y\|[/mm] ,
2. [mm]0
3. Für alle [mm]0
Jetzt kannst du [mm]A[/mm] und [mm]B[/mm] wirklich konstant wählen.
|
|
|
|
|
ich bin mir nicht sicher, ob das so stimmt
[mm] \leq (|e^{-t^2}|)^{||y1||}+ c*||y||\leq [/mm] 1+c*||y||
um c zu berechnen, muss ich folgendes abschätzen
[mm] \frac{||y1||}{||1+y2^2||} \leq [/mm] c
aber da weiß ich nicht mehr weiter. ich weiß nur, dass der nenner >=1 ist.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:15 Do 15.03.2012 | Autor: | cycore |
Hallo,
also die Abschätzung [mm]{e^{-t^2}}^{|y_1|}\leq 1[/mm] ist korrekt, aber wieso bringst du überhaupt dieses c ins Spiel? Sieh nochmal genau hin um zu erkennen, dass du dir das c sparen kannst (c=1), denn [mm]\frac{||y1||}{||1+y2^2||}\leq c[/mm] abzuschätzen ist doppelt gemoppelt, wenn du vorher schon [mm]\dots + c\|y\|[/mm] schreibst.
|
|
|
|
|
also, ist einfach <= 1+||y|| ??
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:23 Fr 16.03.2012 | Autor: | cycore |
Wenn man den ersten Summanden [mm]\leq 1[/mm], und den zweiten [mm]\leq \|y\|[/mm] abschätzen kann, jap. Das ist genau worauf ich hinaus wollte...
|
|
|
|
|
okay, cool ;) danke :)
zur aufgabe gehört noch, wann die zugerhörige anfangswertaufgabe eindeutig ist?
also die anfangswertaufgabe ist ja u'(t)=f(t,u(t)), aber mehr weiß ich nicht...hast du nen tipp??
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:03 Fr 16.03.2012 | Autor: | cycore |
Hallo,
tut mir leid, da muss ich passen. Ich habs nicht so wirklich mit Differentialgleichungen und ich bin mir ohne die zugehörige Literatur zu unsicher um Tipps zu etwaigen Eindeutigkeitsaussagen zu geben.
Aber wenn ich das richtig in Erinnerung habe ist doch der zentrale Eindeutigkeitssatz für gewöhnliche Differentialgleichungen der Satz von Picard-Lindelöf. Vielleicht hilft das ja schon :/
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:20 Di 20.03.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|