www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Lina - Eigenwertbestimmung
Lina - Eigenwertbestimmung < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lina - Eigenwertbestimmung: Beweis Eigenwertbestimmung
Status: (Frage) beantwortet Status 
Datum: 11:16 Mi 29.05.2013
Autor: franz11

Aufgabe
Es seien K ein Körper, A [mm] \in\ IK^n^n [/mm] und  B [mm] \in\ IK^m^m [/mm]  n [mm] \ge\ [/mm] m. Zeigen Sie: Existiert P [mm] \in\ IK^n^m [/mm] mit
Rang(P) = m und AP = PB, so ist jeder Eigenwert von B ein Eigenwert von A.

meine frage ist hierzu, inwieweit der ansatz zu dieser aufgabe auszusehen hat.
allgemein weiß ich was die definitionen bedeuten, aber wie ichs aufschreibe ist eben nicht so klar.
wäre für nen ansatz echt dankbar

grüße franz

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Lina - Eigenwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:55 Mi 29.05.2013
Autor: fred97


> Es seien K ein Körper, A [mm]\in\ IK^n^n[/mm] und  B [mm]\in\ IK^m^m[/mm]  n
> [mm]\ge\[/mm] m. Zeigen Sie: Existiert P [mm]\in\ IK^n^m[/mm] mit
>  Rang(P) = m und AP = PB, so ist jeder Eigenwert von B ein
> Eigenwert von A.
>  meine frage ist hierzu, inwieweit der ansatz zu dieser
> aufgabe auszusehen hat.
>  allgemein weiß ich was die definitionen bedeuten, aber
> wie ichs aufschreibe ist eben nicht so klar.
>  wäre für nen ansatz echt dankbar

Ansatz:  [mm] $Bx=\lambda [/mm] x [mm] \Rightarrow APx=PBx=P(\lambda [/mm] x)= [mm] \lambda [/mm] Px$

FRED

>  
> grüße franz
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]