www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Lemma von Bézout
Lemma von Bézout < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lemma von Bézout: Frage zum Beweis
Status: (Frage) beantwortet Status 
Datum: 15:25 Fr 08.02.2019
Autor: magics

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Lemma von Bézout:

Jede Folge $a_1, ..., a_n$ aus ganzen Zahlen kann man mit einer Zahlenfolge $r_1, ..., r_n$ linearkombinieren, sodass $d = a_1*r_1 + ... + a_n * r_n$ und $d = ggT(a_1, ..., a_n)$

Dies soll nun für den Fall $n=2$ bewiesen werden.



Hallo,

ich komme beim wohl letzten Schritt nicht weiter. Bisher hab ich folgendes gemacht:

Sei $e = ggT(a,b)$
Sei $M:=\{x: x = s*a + t*b: s,t \in \IZ \}$
Sei $d = min(M)$ (Wir binden die Minimalbedingung an d)
Nach dem Lemma gilt: $d = a*s + a*t, s,t \in \IZ$

Nun folgt eine Deduktion über die Teilbarkeit von d:
$e|ggT(a,b) \Rightarrow e|a, e|b$
$e|a \wedge e|b \Rightarrow e|as \wedge e|bt \Rightarrow e|as+bt \Rightarrow e|d$

Sei $q:= divisor(a,d)$ mit $a = q*d + r, 0 \le r < d$

Wir ersetzen nun d durch $ a*s + a*t$ und lösen nach r auf:
$a = q(a*s+b*t)+r$
${r = a - q(a*s + b*t) = \red{a(1+q*s)+b(-q*t)}$

Aus der roten Darstellung soll man nun wegen des Minimalprinzips schließen können, dass $r = 0$ sein muss. Ich sehe allerdings nicht wie.

Grüße
Thomas

        
Bezug
Lemma von Bézout: Antwort
Status: (Antwort) fertig Status 
Datum: 18:04 Fr 08.02.2019
Autor: leduart

Hallo
ich verstehe nicht ganz, warum du das nicht einfach mit dem Euklidischen Algorithmus machst?
Gruß lul

Bezug
                
Bezug
Lemma von Bézout: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:33 Fr 08.02.2019
Autor: magics

Hallo leduart,

der Euklidische Algorithmus (rückwärts) lässt sich meines Wissens nur an ganz konkreten Zahlenbeispielen nachvollziehen und eignet sich nicht explizit als formalen Beweis. Ich mag mich da jedoch täuschen.

Ich glaube die Antwort auf meine Frage ist:
$r = [mm] a(1+q\cdot{}s)+b(-q\cdot{}t)$ [/mm]
Wegen $e|a$ und $e|b$ gilt auch [mm] $e|a(1+q\cdot{}s)+b(-q\cdot{}t)$ [/mm]
Somit kann r nur ein Vielfaches von a und b sein und damit wäre es 0.

Ich finde es an sich schon richtig, sich einen Beweisweg zu suchen, den man versteht und so. Ich kann mich nur schwer damit abfinden bestimmte Wege nicht nachvollziehen zu können und bin da manchmal etwas überakribisch.

Danke dir trotzdem für deinen Hinweis!

Lg
Thomas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]