www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Laurent-Reihe
Laurent-Reihe < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laurent-Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:35 Mo 26.12.2005
Autor: apple81

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
hallo!
könnte mir jemand vielleicht helfen die Laurent-reihe der komplexen funktion  f(z)=exp(z+ [mm] \bruch{1}{z}) [/mm]  um   [mm] x_{0}=0 [/mm]  zu finden?
ich habe so gedacht,

f(z)=exp(z+ [mm] \bruch{1}{z})= e^{z} \*e^{\bruch{1}{z}} [/mm]
      [mm] =(\sum_{k=0}^\infty \frac{z^k}{k!})(\sum_{k=0}^\infty \frac{ z^{-k}}{k!}),aber [/mm] wie geht es weiter?
danke im vorau


        
Bezug
Laurent-Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:29 Di 27.12.2005
Autor: felixf


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  hallo!
> könnte mir jemand vielleicht helfen die Laurent-reihe der
> komplexen funktion  f(z)=exp(z+ [mm]\bruch{1}{z})[/mm]  um   [mm]x_{0}=0[/mm]
>  zu finden?
> ich habe so gedacht,
>  
> f(z)=exp(z+ [mm]\bruch{1}{z})= e^{z} \*e^{\bruch{1}{z}}[/mm]
>        
> [mm]=(\sum_{k=0}^\infty \frac{z^k}{k!})(\sum_{k=0}^\infty \frac{ z^{-k}}{k!}),aber[/mm]
> wie geht es weiter?

Nun, du multiplizierst das aus. Und am besten benennst du das $k$ in der einen Summe in [mm] $\ell$ [/mm] oder so um. Wie man das ganze ausmultipliziert? Benutze das Cauchy-Produkt: Sind [mm] $\sum_{k=0}^\infty a_k$ [/mm] und [mm] $\sum_{\ell=0}^\infty b_\ell$ [/mm] absolut konvergente Reihen, so ist [mm] $\left( \sum_{k=0}^\infty a_k \right) \left( \sum_{\ell=0}^\infty b_\ell \right) [/mm] = [mm] \sum_{k=0}^\infty \sum_{\ell=0}^k a_\ell b_{k-\ell}$. [/mm] Wenn du dann soweit bist musst du passend zusammenfassen (das nur noch ein [mm] $z^k$ [/mm] in jedem Term steht) und passend umnummerieren so, dass du was von der Form [mm] $\sum_{k=-\infty}^\infty c_k z^k$ [/mm] hast.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]